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Administrivia
Course website has some updates

 will give a guest lecture February 3rd, please attend in
person!
Noah Smith

A1 will be released Thursday, plan ahead
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Sources
Content derived from: J&M Ch. 4
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Part 1: Foundations of Text
Classication
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Text classication assigns predened categories to
text using supervised learning. (1/5)

Text classication assigns predened categories to text using
supervised learning.

Let  denote an input text (e.g., document, sentence), and  a
discrete label.
The classication function  is learned from labeled
data .
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Text classication assigns predened categories to
text using supervised learning. (2/5)

For binary labels , dene .

Bernoulli likelihood:

MLE maximizes the log-likelihood:
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Text classication assigns predened categories to
text using supervised learning. (3/5)

Negative log-likelihood gives cross-entropy:

Empirical risk is the average loss:

Multiclass generalization uses softmax cross-entropy ( ).
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Text classication assigns predened categories to
text using supervised learning. (4/5)

Tasks include binary, multiclass, and multilabel classication (e.g.,
spam detection, sentiment analysis).

Binary:  (e.g., spam vs. not spam)

Multiclass:  (e.g., topic labeling with  classes)

Multilabel:  (e.g., documents tagged with multiple
topics)
The choice impacts the loss function: sigmoid for binary, softmax
for multiclass, sigmoid per label for multilabel.

8CSE 447/517 26wi - NLP



Binary, multiclass, multilabel: outputs and loss
Binary Multiclass

Multilabel

Email → Spam?
        0/1

Output: 

Loss:

Doc → Topic
      {1..K}

Output: 

Loss: 

Doc → Tags
      {0,1}^K

Output: 

Loss:
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Text classication assigns predened categories to
text using supervised learning. (5/5)

Clear problem formulation enables effective model selection and
evaluation in NLP applications.

Applications:

Precise denition of input/output space ( ) guides feature
engineering and architecture.
Evaluation metrics (accuracy, F1, AUC) depend on task structure.

Spam ltering (binary)
Sentiment analysis (binary/multiclass)
News categorization (multiclass)
Multi-topic assignment (multilabel)
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Text data is represented as feature vectors using
models like Bag-of-Words and TF/IDF. (1/3)

where  is the count of word  in .

Text data is represented as feature vectors using models like Bag-of-
Words and TF/IDF.
Bag-of-Words (BoW) encodes a document as a sparse vector of term
counts.

Given vocabulary , a document  is represented
as

Ignores word order, capturing only term presence and frequency.
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Toy Bag-of-Words example

Word Count
the 2
quick 2
brown 1
fox 1
jumped 1
over 1
lazy 1
sheep 1
dog 1

Corpus sentence:
“The quick brown fox jumped over the quick, lazy sheep dog.”

Lowercase + split into tokens, then count each word.

Encode a new sentence with the same vocabulary:
“The quick orange fox, jumped over the lazy,
slow turtle.”
Vocabulary order: the, quick, brown, fox, jumped,
over, lazy, sheep, dog
Encoded vector: [2, 1, 0, 1, 1, 1, 1, 0, 0]
Out-of-vocabulary words are ignored: orange,
slow, turtle
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Text data is represented as feature vectors using
models like Bag-of-Words and TF/IDF. (2/3)

where  and  with  total documents
and  documents containing .

Term Frequency-Inverse Document Frequency (TF/IDF) re-weights
terms to emphasize discriminative words.

For term  in document :
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Toy TF/IDF example with 3 documents
Documents:

Vocabulary: , .

Document frequencies: , , .
So  for all three terms.

Example TF/IDF:

: “apple banana apple”

: “banana carrot”

: “apple carrot carrot”

For term “apple” in : , so .

For term “carrot” in : , so .
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From TF/IDF to feature vectors
Fix vocabulary order: .
TF vectors:

Since  for every term, TF/IDF feature vectors are:

These vectors are the rows of the TF/IDF feature matrix for the corpus.

: 

: 

: 
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Text data is represented as feature vectors using
models like Bag-of-Words and TF/IDF. (3/3)

Applications of TF/IDF:
Enables use of linear models (e.g., logistic regression, SVMs) for
text classication.
Forms the basis for feature selection and further dimensionality
reduction.
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (1/8)

where  = true positives,  = true negatives,  = false positives,
 = false negatives.

Evaluation metrics like accuracy, precision, recall, and F1-score
measure classier performance.
Accuracy quanties overall correctness:
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Spam dataset: Is this a good model?
Suppose 1,000,000 emails: 999,000 ham (99.9%) and 1,000 spam
(0.1%).
A model predicts ham for every message.
Accuracy = 999,000 / 1,000,000 = 99.9%.
Is this a good model?
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (2/8)

Precision and recall are class-specic:

Precision: proportion of predicted positives that are correct.
Recall: proportion of actual positives that are retrieved.
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (3/8)

F1-score balances precision and recall:

Generalizes to  for weighting recall vs. precision.

 formula:

Note
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (4/8)

The confusion matrix summarizes true/false positives/negatives; F1
balances precision and recall.
The confusion matrix structure:
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (5/8)
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (6/8)

Directly visualizes classier errors and successes.
Precision-Recall tradeoff:
High precision, low recall: conservative classier.
High recall, low precision: aggressive classier.

-score is harmonic mean, punishing extreme imbalance between
precision and recall.
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (7/8)

Choosing the right metric is crucial, especially for imbalanced data and
model comparison.
When would you tolerate more false positives to catch almost every
true case (prioritize recall)?
When would you tolerate more misses to avoid false alarms (prioritize
precision)?
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classier performance. (8/8)

Accuracy can be misleading for imbalanced classes (e.g., rare disease
detection).

Example: 99% accuracy if classier always predicts majority class.
For skewed data, prefer precision, recall, or  tailored to
application risk.
E.g., spam detection: high recall, moderate precision.
Cross-validation strategies (e.g., stratied -fold) provide robust
estimates and control for class imbalance during evaluation.
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Picking : example scenarios
Choose  when recall matters more than precision (misses are
costly).

Example: cancer screening triage; missing a true case is worse than
a false alarm.
Example: safety incident detection; you want to catch nearly all real
incidents.

Choose  when precision matters more than recall (false alarms
are costly).

Example: automated legal holds; false positives are expensive to
review.
Example: account freeze alerts; avoid disrupting legitimate users.
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Part 2: Logistic Regression
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(1/4)

Discriminative models directly estimate conditional probability ,
emphasizing decision boundaries.

The model focuses on learning the mapping from features  to
labels , rather than modeling  or .

Contrasts with generative models, which require explicit modeling
of the joint distribution  or the marginal .

Inductive bias is centered on maximizing separation between classes
in feature space.
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(2/4)

Logistic regression leverages feature vectors  and weight parameters
 to model  via the sigmoid activation.

The model computes:
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Logistic regression computes a weighted sum (logit)
and applies a sigmoid.
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(3/4)

Training involves optimizing weights  and bias  to minimize the
cross-entropy loss:

The decision boundary is the hyperplane , learned directly
from labeled data.
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Logistic loss is the negative log-likelihood of a
Bernoulli model. (1/1)

Assume  with Bernoulli likelihood:

MLE maximizes , equivalently minimizes negative log-
likelihood:

This is exactly the binary cross-entropy (logistic) loss.
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Iris dataset: binary classication
Classic Iris measurements (sepal/petal lengths) with logistic regression
classifying setosa vs. versicolor using a 2D decision boundary.
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(4/4)

Discriminative approaches enable robust text classication by allowing
targeted feature engineering and direct optimization for accuracy.

Feature engineering can encode linguistic, lexical, or syntactic cues
(e.g., word presence, n-grams, TF-IDF scores).
Empirical performance improves as features are tailored to the
structure and nuances of text data.
Example: In sentiment classication, features such as polarity
lexicon counts or phrase patterns can be incorporated to improve

 estimation.
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (1/7)

where  is the sigmoid activation.

Binary logistic regression models the probability of a binary outcome
using the sigmoid function.
For input , the model denes the probability of class 
as:
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (2/7)

Applications:

Intuition: The sigmoid maps real-valued scores to , enabling
probabilistic interpretation for binary classication.

Text sentiment classication (positive/negative)
Spam detection (spam/not spam)
Medical diagnosis (disease/no disease)
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (3/7)

where .

The model uses cross-entropy loss and optimizes parameters via
(stochastic) gradient descent.
The cross-entropy loss for a single data point is:

For dataset , the total loss:
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (4/7)
Gradient Descent Algorithm:

For each data point, compute the predicted probability  using the
sigmoid function.
Calculate gradients:

Update parameters:
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (5/7)

40CSE 447/517 26wi - NLP



Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (6/7)

Stochastic gradient descent (SGD) updates parameters using individual
samples, improving convergence on large datasets.
This enables effective classication and sets the stage for regularization
to prevent overtting.
Logistic regression provides probabilistic outputs, interpretable
coefficients, and a convex loss surface, facilitating robust training.
Overtting can occur, especially with high-dimensional data;
regularization (e.g., L1, L2 penalties) mitigates this by constraining
parameter magnitudes.
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (7/7)
Next:

We will examine regularization strategies and their effect on
generalization in logistic regression.
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Regularization penalties prevent overtting by
constraining parameter magnitudes. (1/3)

where  controls the regularization strength.

Regularization adds a penalty term to the loss function to discourage
large parameter values.

 norm: 

 regularization (Lasso): 

 regularization (Ridge): 

Regularized loss:
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Regularization penalties prevent overtting by
constraining parameter magnitudes. (2/3)

L2 regularization derives from a Gaussian prior on weights:
Prior: 

MAP estimation adds the penalty  to the loss.

L1 regularization derives from a Laplace (double exponential) prior:
Prior: 

MAP estimation adds the penalty  to the loss.
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Regularization penalties prevent overtting by
constraining parameter magnitudes. (3/3)

L1 regularization promotes sparsity by setting many weights to zero,
enabling feature selection.
L2 regularization shrinks weights uniformly, improving generalization
without feature selection.
Practical guidance:

Use L2 (Ridge) for dense feature spaces or when all features may be
informative.
Use L1 (Lasso) when feature selection is desired or the feature
space is sparse.
Elastic Net combines L1 and L2 for balanced regularization.
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Multiclass logistic regression can be done via one-
vs-rest or softmax approaches. (1/3)

Multiclass logistic regression can be performed using either one-vs-rest
or softmax approaches.

In the one-vs-rest (OvR) strategy,  binary classiers are trained,
one per class, each distinguishing one class from all others.
For class , the classier computes 

The predicted class is .

The softmax approach generalizes logistic regression to multiple
classes by modeling all classes jointly.
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Multiclass logistic regression can be done via one-
vs-rest or softmax approaches. (2/3)

For  classes, the probability of class  is:

The predicted class is again .

Both approaches use the cross-entropy loss, but the softmax
formulation yields a single, vector-valued gradient, while OvR
involves  separate binary losses.
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Multiclass logistic regression can be done via one-
vs-rest or softmax approaches. (3/3)
Applications:

Text classication with more than two categories (e.g., topic or
sentiment classication).
Part-of-speech tagging, where each word must be assigned to one of
many possible tags.
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Multiclass logistic regression: OvR vs. softmax
(diagram)

Softmax (shared norm.)

OvR (K=3 sigmoids)

Takeaways:

OvR is simpler to train with binary solvers and allows per-class
thresholds.
Softmax provides a single, normalized probability distribution across
classes.
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Part 3: Statistical and
Experimental
Considerations
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Statistical signicance testing is essential for
validating NLP experiment results. (1/8)

Example: Trained logistic regression on a toy spam/ham dataset.
We evaluate predictions with a confusion matrix before running
signicance tests.
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Statistical signicance testing is essential for
validating NLP experiment results. (2/8)

Statistical hypothesis testing quanties whether observed performance
differences are likely due to chance.

Null hypothesis : No difference between systems’ true
performance.
-value: Probability of observing results at least as extreme as those

measured, assuming  is true.
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Statistical signicance testing is essential for
validating NLP experiment results. (3/8)

In NLP, model evaluation metrics (e.g., accuracy, F1) are subject to
sampling noise.

Random train/test splits and annotation errors introduce variance.
Without signicance testing, small metric improvements may be
spurious.

Example:
Comparing two classiers with 80.2% vs. 80.7% accuracy on a test
set of size .

Is the 0.5% difference meaningful, or within random variation?
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Statistical signicance testing is essential for
validating NLP experiment results. (4/8)
Methods like bootstrap condence intervals and tests across datasets
assess result reliability.

The bootstrap estimates condence intervals by repeatedly resampling
the test set:
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Statistical signicance testing is essential for
validating NLP experiment results. (5/8)
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Statistical signicance testing is essential for
validating NLP experiment results. (6/8)

Signicance testing across datasets (e.g., paired -test, approximate
randomization) accounts for correlation and variance:

Paired -test: Compare metric differences per example across
systems.
Randomization: Shuffle system outputs to simulate null hypothesis.

Application:
Dror et al. (2017) recommend testing across multiple datasets for
robustness.
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Statistical signicance testing is essential for
validating NLP experiment results. (7/8)
Proper signicance reporting ensures replicability and trust in
classication experiments.

Reporting standards include:
Declaring test set size, number of runs, and test statistic used.
Reporting condence intervals, not just point estimates.
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Statistical signicance testing is essential for
validating NLP experiment results. (8/8)

Replicability crisis in NLP highlights the necessity of statistical rigor.
Example reporting statement:

“System A outperforms System B on F1 ( , 95% CI: [0.02,
0.08]) across 10 datasets.”
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Bootstrap comparison: spam/ham text models
Model A: Bag-of-words counts + L2 logistic regression.
Model B: TF-IDF unigrams + L2 logistic regression.
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Part 4: Case Study: 20
Newsgroups Classication
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20 Newsgroups: classication task
Predict the discussion group label from the post text.
Usenet posts from 20 topical forums (sports, politics, tech, religion).
20 categories, balanced enough that accuracy is meaningful.
We strip headers/footers/quotes to focus on content.
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Dataset overview
Train/test splits come from scikit-learn’s fetch_20newsgroups.
Each example is a short, noisy, user-generated post.

OUTPUT

Train size: 11314  Test size: 7532
Classes: 20
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Example posts (truncated)
Look for topical keywords that hint at the group label.

OUTPUT

[rec.autos] I was wondering if anyone out there could enlighten me on this car I saw the other 
day. It was a 2-door sports car, looked to be from the late 60s/ early 70s. It was called a...

[comp.sys.mac.hardware] --

[comp.graphics] Hello, I am looking to add voice input capability to a user interface I am 
developing on an HP730 (UNIX) workstation. I would greatly appreciate information anyone would 
care to...
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Bigram example: phrase cues
Bigrams capture short phrases (e.g., “space shuttle”, “power supply”).

OUTPUT

Example bigrams: ['60s early' 'info funky' 'know tellme' 'late 60s' 'looked late'
 'looking car' 'model engine' 'production car' 'really small' 'saw day']
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Class distribution (train split)
Classes are roughly balanced, but not perfectly uniform.
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Model A: TF-IDF unigrams + L2 logistic regression
TF-IDF reduces weight on common terms.
L2 regularization discourages overly large weights.
Strong baseline with relatively compact feature space.
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Model B: TF-IDF unigrams+bigrams + L1 logistic
regression

Bigrams add short-phrase cues.
L1 encourages sparse, feature-selective weights.
More features, higher risk of overtting on small topics.
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Accuracy + micro/macro precision/recall/F1
Micro averages track overall correctness; macro highlights per-class
balance.
Micro: pool all predictions, then compute global  from total
TP/FP/FN.
Macro: compute  per class, then average (each class equal
weight).

OUTPUT

Model A: acc=0.648
  micro: P=0.648 R=0.648 F1=0.648
  macro: P=0.650 R=0.635 F1=0.636
Model B: acc=0.557
  micro: P=0.557 R=0.557 F1=0.557
  macro: P=0.619 R=0.546 F1=0.567
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 emphasizes recall when 
Example:  weights recall higher than precision.

Useful when missing a topic is costlier than a false alarm.

OUTPUT

Model A F2: 0.634
Model B F2: 0.550
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Confusion matrix (best macro F1)
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Bootstrapped condence intervals
95% CIs for accuracy and macro F1.
Overlapping intervals would suggest weak evidence of a difference.
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Model comparison takeaways
Model A is a strong, simple baseline with fewer features.
Model B adds phrase cues but can trade speed for sparsity.
Macro metrics and the confusion matrix show where each model
struggles.
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