
Neural Networks
Robert Minneker

2026-01-29

1

Sources
Content derived from: J&M Ch. 6

2

Part 1: Foundations of
Neural Networks

3

Neural networks emerged from decades of research
on connectionist computation

Early foundations: McCulloch & Pitts (1943), Hebb (1949), Turing
(1948)
Turing’s insight: Complex behaviors emerge from many simple
interacting units
The connectionist paradigm: computation through distributed, parallel
processing

1943
McCulloch-

Pitts
Neuron

→
1958

Rosenblatt's
Perceptron

→ 1986
Backpropagation

→
2012

Deep Learning
Revolution

→ 2017
Transformers

4

The perceptron was the rst learnable neural
architecture

Rosenblatt (1958) formalized learning from labeled examples
Update rule adjusts weights based on prediction errors:

Enabled learning of linear decision boundaries in input space

Perceptron Can Learn
AND, OR, NOT gates

Linearly separable problems

Perceptron Cannot Learn
XOR gate

Non-linearly separable

5

Why XOR breaks the perceptron

Solution: Add a hidden layer to create a non-linear decision boundary.

The XOR problem: no single line can separate the classes. Red points (output=1) sit on opposite
corners.

6

Backpropagation enabled training of multi-layer
networks

Rumelhart, Hinton, and Williams (1986) introduced error
backpropagation
Uses the chain rule to compute gradients through layers:

Allowed training networks with hidden layers, overcoming perceptron
limitations

7

Modern architectures build on these foundational
principles

Hierarchical representation learning extracts increasingly abstract
features
Non-linear function approximation enables modeling complex
relationships
Scalability through parallelization and specialized hardware (GPUs,
TPUs)

Applications span:

8

A neural network is a computational graph of
interconnected processing units

Each neuron computes a weighted sum of inputs plus bias, then
applies an activation:

: weight vector (learned parameters)

: input vector

: bias term

: nonlinear activation function

9

Networks are organized into layers with distinct
roles

Input Layer
x₁

x₂

x₃

→
Hidden Layer(s)
h₁

h₂
→

Output Layer
ŷ₁

ŷ₂

Input layer: Receives raw features (e.g., word embeddings)
Hidden layers: Learn intermediate representations
Output layer: Produces predictions (often via softmax)

10

Feedforward networks process information in one
direction only

Data ows from input → hidden → output with no cycles
Each layer’s output becomes the next layer’s input
The entire computation is a composition of functions:

11

Recurrent networks can model sequential
dependencies through cycles

Allow information to persist across time steps
Hidden state encodes history of previous inputs

Essential for language modeling, speech recognition, time series

Feedforward
Fixed-size input → Fixed-size

output
Image classication, sentiment analysis

Recurrent
Sequence → Sequence or output

Language modeling, machine translation

12

Neural network computation is fundamentally linear
algebra

Inputs, parameters, and activations are vectors and matrices
Core operation: matrix-vector multiplication plus bias

Dimensions must align: if and , then

13

Dot products measure vector similarity

Similar (θ ≈ 0°)

→ →
a · b > 0

Vectors point same
direction

Orthogonal (θ =
90°)

→ ↑
a · b = 0

Vectors are unrelated

Opposite (θ ≈
180°)

→ ←
a · b < 0

Vectors point opposite

Neural networks use dot products to measure relevance between
vectors

14

Matrix multiplication computes all pairwise dot
products

If and , then:

Q (3×d)
q₁

q₂

q₃

×
KT (d×4)

k₁ k₂ k₃ k₄ =
Similarity (3×4)
q₁·k₁ q₁·k₂ q₁·k₃ q₁·k₄

q₂·k₁ q₂·k₂ q₂·k₃ q₂·k₄

q₃·k₁ q₃·k₂ q₃·k₃ q₃·k₄

One matrix multiply computes all 12 similarities in parallel!
15

Activation functions introduce essential nonlinearity
After computing , we apply an activation function elementwise:

ReLU
max(0, z)

Simple, fast, sparse

Sigmoid
1/(1+e⁻ᶻ)
Output in (0,1)

Tanh
(eᶻ-

e⁻ᶻ)/(eᶻ+e⁻ᶻ)
Output in (-1,1)

16

Activation function shapes determine gradient ow

Why ReLU dominates: Constant gradient (1) for positive inputs
prevents vanishing gradients in deep networks.

Activation functions and their gradients. ReLU dominates modern networks due to its constant gradient
for positive inputs.

17

The softmax function converts scores to
probabilities

Transforms a vector into a probability distribution:

Guarantees: and

18

Part 2: Feedforward Neural
Networks

19

Each layer transforms its input through weights,
bias, and activation
For layer :

: learnable weight matrix

: learnable bias vector

: activation function

x⁽ⁱ⁻¹⁾ → W⁽ⁱ⁾x + b⁽ⁱ⁾ → f⁽ⁱ⁾(·) → x⁽ⁱ⁾

20

Activation functions serve different purposes in
different layers
Location Common Choice Purpose
Hidden layers ReLU, GELU Introduce

nonlinearity,
sparse activation

Binary output Sigmoid Probability in
[0,1]

Multi-class output Softmax Probability
distribution

Regression output None (linear) Unbounded real
values

21

The universal approximation theorem guarantees
theoretical expressivity
Theorem: A feedforward network with one hidden layer and sufficient
neurons can approximate any continuous function on a compact domain
to arbitrary precision.

But this doesn’t mean shallow networks are always practical:

May require exponentially many neurons
Says nothing about learnability or generalization

22

Depth enables efficient representation of
compositional structure

Shallow Network

O(2ⁿ)
neurons for some functions

Deep Network

O(n)
neurons for same functions

Telgarsky (2016): Some functions require exponentially more units in
shallow vs. deep networks
Depth captures hierarchical/compositional structure naturally
Language has recursive, hierarchical structure → depth helps

23

Part 3: Learning and
Training Algorithms

24

Supervised learning optimizes parameters using
labeled examples

Training data: pairs of inputs and target outputs

Model predicts:

Objective: minimize average loss over training set

25

Loss functions measure prediction quality

Cross-Entropy (Classication)

ℓ = −Σ y log ŷ
Penalizes low probability on correct
class

MSE (Regression)

ℓ = (y − ŷ)²
Penalizes squared deviation from
target

Cross-entropy loss for classication:

26

NLP applications of supervised learning span many
tasks

Task Input Output

POS tagging Word + context POS tag (noun, verb, etc.)
Sentiment Sentence/document Sentiment class
NER Word + context Entity type or O
Text classication Document Topic/category

27

Backpropagation computes gradients efficiently via
the chain rule

We need for each layer to update weights

Backprop propagates error signals backward through the network

where is the error signal at layer .

28

Error signals propagate backward through the
network
Forward Pass

Input x → Hidden h¹ → Hidden h² → Output ŷ

Backward Pass

∂L/∂ŷ ← δ² ← δ¹ ← ∂L/∂x

The recursive error signal computation:

29

Gradients drive parameter updates via gradient
descent
Weight update rule:

: learning rate (critical hyperparameter)

Too high → unstable, may diverge; Too low → slow convergence

30

Gradient descent navigates the loss landscape

Gradient descent follows the steepest downhill direction; step size η
determines how far we move each update.

Gradient descent behavior with different learning rates. The learning rate η controls convergence speed
and stability.

31

Backpropagation is not an optimizer—it computes
gradients for optimizers
Common misconception: Backprop = training algorithm
Reality:

Backprop: efficient gradient computation method
SGD/Adam/etc.: optimization algorithms that use gradients
Together they enable training, but they’re distinct concepts

Loss L → Backpropagation → Gradients L → Optimizer
(SGD, Adam)

→ New Weights

32

SGD processes mini-batches for efficient, noisy
updates
Stochastic Gradient Descent:

: random mini-batch at step

Noisy gradients can help escape local minima
Much faster than full-batch gradient descent

33

Adam combines momentum and adaptive learning
rates
Adam update equations:

: momentum (smoothed gradient)

: adaptive scaling (per-parameter)

Default: , ,

34

Optimizers behave differently on complex loss
surfaces

Adam combines momentum’s smoothing with per-parameter learning
rate scaling—faster and more robust convergence.

Optimizer behavior on a saddle-like loss surface. SGD oscillates, Momentum smooths, Adam adapts step
sizes per-parameter.

35

Regularization prevents overtting by constraining
model capacity

L2 Regularization
L' = L + λǁθǁ²
Penalizes large weights

Dropout
hᵢ = rᵢ · hᵢ
rᵢ ~ Bernoulli(p)

Early Stopping
Stop when val↑
Monitor validation loss

36

Dropout forces the network to learn redundant
representations

During training: randomly set fraction of activations to 0

During inference: use all neurons, scale by

Effect: no single neuron can become too important

Training (with dropout)

→ →

Some neurons "dropped"

Inference (no dropout)

→ →

All neurons active

37

Dropout signcantly reduces overtting

Improving neural networks by preventing co-adaptation of feature detectors (Hinton et al., 2012)
38

Part 4: Advanced
Architectures and
Extensions

39

Vanishing gradients make training deep networks
difficult

Gradients shrink exponentially when propagated through many layers
For sigmoid: , so gradient decays by at least 4× per layer

With 10 layers: gradient shrinks by

40

Exploding gradients cause training instability
The opposite problem: gradients grow exponentially
Occurs when and compounds across layers

Symptoms: NaN losses, weights becoming innite

Solutions:

Gradient clipping: if

Careful weight initialization
Batch normalization

41

Proper initialization maintains gradient ow
Xavier/Glorot initialization:

He initialization (for ReLU):

Goal: keep activation and gradient variance stable across layers
Critical for training networks with 10+ layers

42

Residual connections enable training of very deep
networks

Key idea: Add input directly to output via “skip connection”

h⁽ˡ⁾

↓

f(·)

↓

→ h⁽ˡ⁺¹⁾

Why it helps: Gradient ows directly through the skip connection:

+
skip

43

Residual connections: empirical evidence

Training error on CIFAR-10: without residuals, a 56-layer “plain” network performs worse than a 20-
layer network—even on training data. With residual connections (right), deeper networks consistently

outperform shallower ones.Figure from He et al. (2015), “Deep Residual Learning for Image Recognition”

44

Layer normalization stabilizes training of deep
networks

: mean and std computed across features (per example)

: learnable scale and shift parameters

Batch Normalization
Normalize across batch dimension
• Depends on batch statistics
• Different behavior train vs test
• Problematic for variable-length
sequences

Layer Normalization
Normalize across feature dimension
• Independent of batch size
• Same behavior train and test
• Works with any sequence length

45

Comparing normalization techniques: BatchNorm vs
LayerNorm vs RMSNorm

BatchNorm LayerNorm RMSNorm
Normalizes Batch dim Feature dim Feature dim
Train/Test Different Same Same
Used in CNNs Transformers LLaMA, Gemma

46

RNNs model sequences by maintaining state across
time steps

h₁

↑

x₁
→

h₂

↑

x₂
→

h₃

↑

x₃
→

h₄

↑

x₄
→ ŷ

Hidden state encodes information from

Same parameters () used at every time step

47

The RNN sequential bottleneck limits
parallelization

 depends on creates a dependency chain

Cannot compute until are nished

h₁ WAIT → h₂ WAIT → h₃ WAIT → h₄ WAIT → h₅

O(T) sequential steps for sequence length T

Implications:

Cannot fully utilize parallel hardware (GPUs have thousands of cores)
Training time scales linearly with sequence length
Key question: What if we could process all tokens at once?

48

Autoregressive vs bidirectional processing
Autoregressive (left-to-right): Each position only sees the past

Bidirectional: Each position sees the entire sequence

Autoregressive (GPT)

The cat sat ? ?
Position 3 sees only positions 1-2

Bidirectional (BERT)

The cat [MASK] on mat
Position 3 sees all positions

49

Standard RNNs struggle with long-range
dependencies

"The cat , which was sitting on the mat in the living room where

my grandmother used to read her favorite novels during the

winter evenings, was hungry."

The verb "was" must agree with "cat" despite 20+ intervening words.

Gradient signal degrades over long distances
LSTM and GRU use gating mechanisms to preserve information
Transformers use attention to directly connect distant positions

50

Context as a weighted combination of
representations

What if we could directly access all previous representations?
Key insight: compute a weighted sum based on relevance

: attention weight (how relevant is position to position ?)

: value vector at position

v₁

α₄₁ = 0.1

v₂

α₄₂ = 0.5

v₃

α₄₃ = 0.3
→ output₄

Σ αᵢ · vᵢ
51

Attention weights reveal what the model focuses on
Attention from "it" in: "The cat sat on the

mat because it was tired"
The cat sat on the mat because it was

it
→

0.05 0.45 0.10 0.03 0.02 0.15 0.05 0.10 0.05

What attention reveals:

The pronoun "it" attends most
strongly to "cat" (0.45)—the
model has learned
coreference!

Darker = higher attention weight

52

BERT attention learns coreference resolution

Attention patterns from BERT showing coreference resolution. The model learns to link pronouns to
their antecedents—here “it” attends strongly to “cat” and “dog” to resolve what each pronoun refers to.Figure from Clark et al. (2019), “What Does BERT Look At? An Analysis of BERT’s Attention”

53

Position information must be explicitly encoded
Without recurrence, order information is lost
“Dog bit man” and “man bit dog” would be identical!

Without Position Info

{dog, bit, man} = {man, bit,
dog}

Bag of words—order lost!

With Position Encoding

(dog, 1), (bit, 2), (man, 3)
Order preserved via position

Key question: How do we inject position information into parallel
architectures?

54

Sinusoidal position encodings (Vaswani et al., 2017)
Add a position-dependent vector to each token embedding:

Sinusoidal position encodings: each position gets a unique pattern. Low dimensions oscillate rapidly
(ne position), high dimensions oscillate slowly (coarse position).

Key properties: Each position gets a unique encoding; relative positions
computable via linear transformation; generalizes to longer sequences.

55

Part 5: Applications

56

Neural networks power core NLP tasks
Task Architecture Output
Text
classication

Feedforward / CNN / Transformer Class probabilities
(softmax)

Language
modeling

RNN / Transformer Next token
probabilities

Sequence
labeling

BiLSTM / Transformer Tag per token

Machine
translation

Encoder-decoder Target sequence

57

Text classication assigns labels to documents
Document
'Great movie!' →

Embedding
Layer → Encoder

(CNN/LSTM/Transformer) →

Pooling → Dense → Softmax → P(pos)=0.92
P(neg)=0.08

Applications: Sentiment analysis, spam detection, topic classication

58

Language modeling predicts the next token in a
sequence

59

Neural networks excel across diverse domains

Computer Vision
CNNs for image classication, object
detection, segmentation

Reinforcement Learning
Deep Q-networks, policy gradients
for game playing, robotics

Bioinformatics
Protein structure prediction
(AlphaFold), genomics

Recommendations
Neural collaborative ltering,
content-based systems

Same fundamental principles (backprop, gradient descent) apply
Architecture choices encode domain-specic inductive biases

60

Part 6: Further Reading
and Historical Notes

61

Key references for deeper understanding
Textbooks:

Goodfellow, Bengio, & Courville (2016), Deep Learning —
comprehensive theory and practice
Jurafsky & Martin, Speech and Language Processing Ch. 6-8

62

Key milestones in neural network history

Foundations
1943 — McCulloch-
Pitts neuron
1958 — Perceptron
(Rosenblatt)
1969 — Perceptrons
book → AI Winter

Revival
1986 —
Backpropagation
1990 — Elman RNNs
1997 — LSTM
(Hochreiter &
Schmidhuber)

Modern Era
2012 — AlexNet →
Deep learning
revolution
2017 — Transformer
architecture
2018 — BERT, GPT

63

Summary: Neural Networks - Key Takeaways
Architecture: Networks of neurons organized in layers; feedforward
vs. recurrent
Learning: Supervised learning minimizes loss via gradient descent
Backpropagation: Efficient gradient computation using the chain rule
Optimization: SGD, Adam; regularization (dropout, L2) prevents
overtting
Challenges: Vanishing/exploding gradients addressed by careful
design
Applications: Text classication, language modeling, and beyond

64

Questions?
Coming up next: Transformers and attention mechanisms
Resources:

Goodfellow et al. Deep Learning (free online)
3Blue1Brown neural network videos (visual intuition)
PyTorch tutorials (hands-on practice)

65

