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Part 1: Foundations of
Neural Networks



Neural networks emerged from decades of research
on connectionist computation

e Early foundations: McCulloch & Pitts (1943), Hebb (1949), Turing
(1948)

e Turing’s insight: Complex behaviors emerge from many simple
interacting units

e The connectionist paradigm: computation through distributed, parallel
processing
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The perceptron was the first learnable neural
architecture

e Rosenblatt (1958) formalized learning from labeled examples

e Update rule adjusts weights based on prediction errors:

A

w < w+n(y — g)x

e Enabled learning of linear decision boundaries in input space

Perceptron Can Learn Perceptron Cannot Learn
AND, OR, NOT gates XOR gate

Linearly separable problems Non-linearly separable



Why XOR breaks the perceptron
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No single line can
separate the classes!

The XOR problem: no single line can separate the classes. Red points (output=1) sit on opposite
corners.

Solution: Add a hidden layer to create a non-linear decision boundary.



Backpropagation enabled training of multi-layer
networks

e Rumelhart, Hinton, and Williams (1986) introduced error
backpropagation

e Uses the chain rule to compute gradients through layers:
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e Allowed training networks with hidden layers, overcoming perceptron
limitations



Modern architectures build on these foundational
principles
e Hierarchical representation learning extracts increasingly abstract

features

e Non-linear function approximation enables modeling complex
relationships

e Scalability through parallelization and specialized hardware (GPUs,
TPUs)

Applications span:



A neural network is a computational graph of
interconnected processing units

e Each neuron computes a weighted sum of inputs plus bias, then
applies an activation:

h=f(w'x+0)

e w: weight vector (learned parameters)
® X: input vector
e b: bias term

e f:nonlinear activation function



Networks are organized into layers with distinct
roles

Input Layer .
@ Hidden Layer(s) Output Layer

- -
o
g " 2

e Input layer: Receives raw features (e.g., word embeddings)

 Hidden layers: Learn intermediate representations

e Output layer: Produces predictions (often via softmax)
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Feedforward networks process information in one
direction only

e Data flows from input — hidden — output with no cycles
e Each layer’s output becomes the next layer’s input

e The entire computation is a composition of functions:

{ = f[L](f[L—l](. . fm(x) .2)
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Recurrent networks can model sequential
dependencies through cycles

e Allow information to persist across time steps

e Hidden state h; encodes history of previous inputs

e Essential for language modeling, speech recognition, time series

Feedforward Recurrent
Fixed-size input — Fixed-size Sequence — Sequence or output
output Language modeling, machine translation

Image classification, sentiment analysis
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Neural network computation is fundamentally linear
algebra

e Inputs, parameters, and activations are vectors and matrices

e Core operation: matrix-vector multiplication plus bias

z—=Wx-+Db

e Dimensions must align: if x € R and W € R™*9, then z € R™
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Dot products measure vector similarity

a-b = |[a]||b][ cos(6)

Similar (0 = 0°) Orthogonal (0 = Opposite (0 =
90°) 180°)
> >
— 1 — «—
a - b>20
Vectors point same a - b=20 a - b<0
direction Vectors are unrelated Vectors point opposite

Neural networks use dot products to measure relevance between
vectors
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Matrix multiplication computes all pairwise dot
products

e If Q € R™%and K € R™*¢, then:

(QK ')ij = q; - k;

Q (3xd) Similarity (3x4)
KT (dx4)

q qrrki qirke qicks qicka

Jz ~ 0 0 7 qeki gecke qerks qerka

g3 qzki qzke gsrks gscka

One matrix multiply computes all 12 similarities in parallel!
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Activation functions introduce essential nonlinearity

After computing z, we apply an activation function elementwise:

h = ¢(z)
ReLU Sigmoid
max(Q, z) 1/(1+e-2)
Simple, fast, sparse Output in (0,1)
Tanh
(e”-

e~2)/(ez+e-2)
Output in (-1,1)
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Activation function shapes determine gradient flow

RelLU Sigmoid Tanh

Gradient: max 0.25 Gradient: max 1.0

Grgfdiert: 0 or 1 1.0 A 1.0 1 Zero-centered but satu
3 Saturates at extremes
o saturjtion forz > 0 0.8 -
) 0.5 A
27 0.6 -
0.0 A i
1 _ 04 T
0.2 - —0.5 A
0 o ——
0.0 4 —1.0 A

Activation functions and their gradients. ReLU dominates modern networks due to its constant gradient
for positive inputs.

Why ReLU dominates: Constant gradient (1) for positive inputs
prevents vanishing gradients in deep networks.
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The softmax function converts scores to
probabilities

e Transforms a vector z into a probability distribution:

exp(z;)
2?21 exp(z;)

softmax(z;) =

e Guarantees: ) . softmax(z;) = 1 and 0 < softmax(z;) < 1
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Part 2: Feedforward Neural
Networks



Each layer transforms its input through weights,
bias, and activation

For layer i:
xlfl = ¢l (me[i—u n bm)

e Wl learnable weight matrix
e blil: Jearnable bias vector

e flil; activation function

x(1-1) Whx + ph fh(-) x(h
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Activation functions serve different purposes in

different layers

Location Common Choice Purpose

Hidden layers RelLU, GELU Introduce
nonlinearity,
sparse activation

Binary output Sigmoid Probability in
[0,1]

Multi-class output  Softmax Probability
distribution

Regression output  None (linear) Unbounded real

values
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The universal approximation theorem guarantees
theoretical expressivity

Theorem: A feedforward network with one hidden layer and sufficient

neurons can approximate any continuous function on a compact domain
to arbitrary precision.

Ve > 0,3f : sup|f(z) — f(z)| < €
reK

But this doesn’t mean shallow networks are always practical:

e May require exponentially many neurons

e Says nothing about learnability or generalization
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Depth enables efficient representation of
compositional structure

Shallow Network Deep Network
O(2") O(n)
neurons for some functions neurons for same functions

e Telgarsky (2016): Some functions require exponentially more units in
shallow vs. deep networks

e Depth captures hierarchical/compositional structure naturally

e Language has recursive, hierarchical structure — depth helps
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Part 3: Learning and
Training Algorithms



Supervised learning optimizes parameters using
labeled examples

e Training data: pairs (x, y) of inputs and target outputs
e Model predicts: § = fo(x)

e Objective: minimize average loss over training set

£(0) =+ D (folx), )

1=1
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Loss functions measure prediction quality

Cross-Entropy (Classification) MSE (Regression)

£=—Zkyk10g§7k f=(y_§7)2
Penalizes low probability on correct Penalizes squared deviation from
class target

Cross-entropy loss for classification:

Ler(y Z Y, log Ui
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NLP applications of supervised learning span many
tasks

Task Input x Output y

POS tagging Word + context POS tag (noun, verb, etc.)
Sentiment Sentence/document Sentiment class

NER Word + context Entity type or O

Text classification Document Topic/category
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Backpropagation computes gradients efficiently via
the chain rule

e We need % for each layer to update weights

e Backprop propagates error signals backward through the network

OL
ow !

_ 5[1] (a[l—l] )T

where 6l = % is the error signal at layer /.
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Error signals propagate backward through the
network

Forward Pass

Input x — Hidden h! — Hidden h? — Outputy

Backward Pass

oL/ay «— o> «— 0! « dL/ox
The recursive error signal computation:

sl _ (W[z+1])T5[z+1] o o' (A1)
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Gradients drive parameter updates via gradient
descent

Weight update rule:

OL
] ] _
W «— W n pomen
OL
] U _ 7
b < b N il

e 7n: learning rate (critical hyperparameter)

e Too high — unstable, may diverge; Too low — slow convergence
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Gradient descent navigates the loss landscape

Good n n too small n too large
) )
S\
N ‘e
Converges smoothly Slow progress Overshoots, diverges

Gradient descent behavior with different learning rates. The learning rate n controls convergence speed
and stability.

Gradient descent follows the steepest downhill direction; step size n
determines how far we move each update.
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Backpropagation is not an optimizer—it computes
gradients for optimizers

Common misconception: Backprop = training algorithm
Reality:

e Backprop: efficient gradient computation method

e SGD/Adam/etc.: optimization algorithms that use gradients

e Together they enable training, but they’re distinct concepts

Optimizer

Loss L Backpropagation Gradients VL (SGD, Adam)

New Weights
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SGD processes mini-batches for efficient, noisy
updates

Stochastic Gradient Descent:

Orr1 = 0: — 77V9L(9t; Bt)

e 3;: random mini-batch at step ¢

* Noisy gradients can help escape local minima

e Much faster than full-batch gradient descent
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Adam combines momentum and adaptive learning
rates

Adam update equations:
my = Bimy—1 + (1 — B1)VeL(6;)

vy = Bovi—1 + (1 — B2)(VoL(6,))*

1y
011 =0;—n
v/ Ut + €
* m;: momentum (smoothed gradient)
e v;: adaptive scaling (per-parameter)

o Default: 81 = 0.9, B2 = 0.999, e = 10~°
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Optimizers behave differently on complex loss
surfaces

Momentum Adam

>> W RNV
A\ 1/AN /A

Oscillates in ravines Smooths oscillations Adapts per-parameter

Optimizer behavior on a saddle-like loss surface. SGD oscillates, Momentum smooths, Adam adapts step
sizes per-parameter.

Adam combines momentum’s smoothing with per-parameter learning
rate scaling—faster and more robust convergence.
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Regularization prevents overfitting by constraining
model capacity

L2 Regularization Dropout Early Stopping
L'=L + AlBI2 hi=r;- h; Stop when valt

Penalizes large weights 1; ~ Bernoulli(p) Monitor validation loss
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Dropout forces the network to learn redundant
representations

e During training: randomly set fraction p of activations to 0

e During inference: use all neurons, scale by (1 — p)

e Effect: no single neuron can become too important

Training (with dropout) Inference (no dropout)

Some neurons "dropped" All neurons active
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Dropout signficantly reduces overfitting

Im
20 Test Error
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Fig. 1: The error rate on the MNIST test set for a variety of neural network architectures trained
with backpropagation using 50% dropout for all hidden layers. The lower set of lines also
use 20% dropout for the input layer. The best previously published result for this task using
backpropagation without pre-training or weight-sharing or enhancements of the training set is
shown as a horizontal line.

Improving neural networks by preventing co-adaptation of feature detectors (Hinton et al., 2012)
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Part 4: Advanced
Architectures and
Extensions



Vanishing gradients make training deep networks
difficult

e Gradients shrink exponentially when propagated through many layers

e For sigmoid: ¢'(z) < 0.25, so gradient decays by at least 4 X per layer

5[1] _ (W[l+1])T5[l+1] ® O_I(Z[l])

e With 10 layers: gradient shrinks by ~ 41 ~ 10°
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Exploding gradients cause training instability

e The opposite problem: gradients grow exponentially

e Occurs when ||[W¥]|| > 1 and compounds across layers

e Symptoms: NaN losses, weights becoming infinite

Solutions:

e Gradient clipping: g < g- — if ||g|| > T

e Careful weight 1n1t1ahzat10n

e Batch normalization
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Proper initialization maintains gradient flow

Xavier/Glorot initialization:

2
Va,r[Wij] —
Nin + Nout
He initialization (for ReLU):
2
V&I‘[WZ‘]‘] — n—m

e Goal: keep activation and gradient variance stable across layers

e (Critical for training networks with 10+ layers
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Residual connections enable training of very deep
networks

e Key idea: Add input directly to output via “skip connection”

hi+1 — f(hm) + h

ho f(.) E + i Ha+D)

______________

Why it helps: Gradient flows directly through the skip connection:

[[+1]
oh _ of 1
ohll ohll
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Residual connections: empirical evidence
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

Training error on CIFAR-10: without residuals, a 56-layer “plain” network performs worse than a 20-
layer network—even on training data. With residual connections (right), deeper networks consistently
Figure from He et al. (2015), “Deep ResidpelforanrshglfowtmageRecognition”
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Layer normalization stabilizes training of deep
networks

X — W
o+ €

LayerNorm(x) = v ® + 5

* 1,0: mean and std computed across features (per example)

* v, f3: learnable scale and shift parameters

Batch Normalization Layer Normalization

Normalize across batch dimension Normalize across feature dimension
e Depends on batch statistics * Independent of batch size

e Different behavior train vs test e Same behavior train and test

e Problematic for variable-length e Works with any sequence length v

sequences
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Comparing normalization techniques: BatchNorm vs
LayerNorm vs RMSNorm

BatchNorm LayerNorm RMSNorm
el ey +B e
HE | (T T
” T | B(ﬁh!!!!!! - I
5
e

Features (d) Features (d) Features (d)

BatchNorm LayerNorm RMSNorm

Normalizes Batch dim Feature dim  Feature dim

Train/Test  Different Same Same

Used in CNNs Transformers LLaMA, Gemma




RNNs model sequences by maintaining state across

time steps

h;, = f(Wux; + Wpph 1 + by)

hi h hs hs

X1 X2 X3 X4

e Hidden state h; encodes information from 1, ..., x;

e Same parameters (W, Wyp) used at every time step
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The RNN sequential bottleneck limits
parallelization

e h,; depends on h; ; creates a dependency chain

e Cannot compute hs until hy, hy, hs, hy are finished

h: WAIT h: WAIT hs WAIT h:s WAIT hs

O(T) sequential steps for sequence length T
Implications:

e Cannot fully utilize parallel hardware (GPUs have thousands of cores)

e Training time scales linearly with sequence length

e Key question: What if we could process all tokens at once?
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Autoregressive vs bidirectional processing

Autoregressive (left-to-right): Each position only sees the past

n

H P(x¢|z1,..., 2t 1)

t=1

P(xi,22,...,25)

Bidirectional: Each position sees the entire sequence

Autoregressive (GPT) Bidirectional (BERT)
The cat sat 7 °? The cat [MASK] on mat

Position 3 sees only positions 1-2 Position 3 sees all positions
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Standard RNNs struggle with long-range
dependencies

"The [0, which was sitting on the mat in the living room where
my grandmother used to read her favorite novels during the
winter evenings, hungry."

The verb "was" must agree with "cat" despite 20+ intervening words.

e Gradient signal degrades over long distances
e LSTM and GRU use gating mechanisms to preserve information

e Transformers use attention to directly connect distant positions
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Context as a weighted combination of
representations

e What if we could directly access all previous representations?

e Key insight: compute a weighted sum based on relevance
t
output, = Z Qi Vj
j=1

* oy attention weight (how relevant is position j to position ¢?)

* v;: value vector at position j

\'% | V2 V3 outputs

as1 = 0.1 a2 = 0.5 a3 = 0.3 2 Qi Vi
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Attention weights reveal what the model focuses on

Attention from "it" in: "The cat sat on the

mat because it was tired" What attention reveals:

The pronoun "it" attends most
strongly to "cat" (0.45)—the

The <cat sat on the mat because it was

it 0.05 0.10 0.03 0.02 0.15 0.05 0.10 0.05

—

model has learned

coreference!

Darker = higher attention weight
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BERT attention learns coreference resolution



Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

[CLS] [CLS] [CLS] [CL5]
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Head 8-11

- Noun modifiers (e.g., determiners) attend

to their noun

- 94.3% accuracy at the det relation
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Head 7-6

- Possessive nouns and apostrophes
attend to the head of the corresponding NP

- 80.5% accuracy at the poss relation
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Head 4-10

- Passive auxiliary verbs attend to the
verb they modify

- 82.5% accuracy at the auxpass relation
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Head 9-8

- Prepositions attend to their objects
- 76.3% accuracy at the pobj relation

[CLS)

[CLS]

Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent
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Figure 5: BERT attention heads that correspond to linguistic phenomena. In the example attention maps, the
darkness of a line indicates the strength of the attention weight. All attention to/from red words is colored red;
these colors are there to highlight certain parts of the attention heads’ behaviors. For Head 9-6, we don’t show
attention to [SEP] for clarity. Despite not being explicitly trained on these tasks, BERT"s attention heads perform
remarkably well, illustrating how syntax-sensitive behavior can emerge from self-supervised training alone.

Attention patterns from BERT showing coreference resolution. The model learns to link pronouns to
HRilgeireafrcenedéarts-ethadr 20099t t€ s att Fooed \BEER I d 18 cln A 1 Agl” Ao absodve BER €scAtpentionti refers to.



Position information must be explicitly encoded

e Without recurrence, order information is lost

e “Dog bit man” and “man bit dog” would be identical!

Without Position Info With Position Encoding
{dog, bit, man} = {man, bit, (dog, 1), (bit, 2), (man, 3)
dog} Order preserved via position

Bag of words—order lost!

Key question: How do we inject position information into parallel
architectures?
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Sinusoidal position encodings (Vaswani et al., 2017)

Add a position-dependent vector to each token embedding:

, oJoX; PpOS
F(pos 20 = sin ( T0000%/ )+ lposziet) = €08 { o
1.00
I 0.75 Low dims:
rapid oscillation
- 0.50 (fine position)
- 0.25 =
5 >
E= -0.00 2
g F-0.25 &
I —0.50 High dims:
slow oscillation
-0.75 (coarse position)
-1.00

Embedding Dimension

Sinusoidal position encodings: each position gets a unique pattern. Low dimensions oscillate rapidly
(fine position), high dimensions oscillate slowly (coarse position).



Key properties: Each position gets a unique encoding; relative positions
computable via linear transformation; generalizes to longer sequences.
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Part 5: Applications



Neural networks power core NLP tasks

Task Architecture Output

Text Feedforward / CNN / Transformer Class probabilities
classification (softmax)
Language RNN / Transformer Next token
modeling probabilities
Sequence BiLSTM / Transformer Tag per token
labeling

Machine Encoder-decoder Target sequence

translation
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Text classification assigns labels to documents

Document Embedding Encoder
'Great movie!' Layer (CNN/LSTM/Transformer)
Pooling Dense Softmax P(pos)=0.92
P(neg)=0.08

Applications: Sentiment analysis, spam detection, topic classification
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Language modeling predicts the next token in a
sequence

P(wi|wq, ..., w;_1) = softmax(Wh;_; + b)

i-th output = P(w, = i | context)

softmax
[ X ) 000 )

. \
most| computation here \

...........................................
shared parameters
across words

index for wy_,41 index for w;_» index for w,_;

Figure 1: Neural architecture: f(i,w;_1, - ,Wy—p+1) =2(;,C(Ws—1), -+ ,C(Ws_,11)) where g is the
neural network and C(i) is the i-th word feature vector.
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Neural networks excel across diverse domains

Computer Vision Reinforcement Learning
CNNss for image classification, object Deep Q-networks, policy gradients
detection, segmentation for game playing, robotics
Bioinformatics Recommendations

Protein structure prediction Neural collaborative filtering,
(AlphaFold), genomics content-based systems

e Same fundamental principles (backprop, gradient descent) apply

e Architecture choices encode domain-specific inductive biases
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Part 6: Further Reading
and Historical Notes



Key references for deeper understanding
Textbooks:

e Goodfellow, Bengio, & Courville (2016), Deep Learning —
comprehensive theory and practice

e Jurafsky & Martin, Speech and Language Processing Ch. 6-8
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Key milestones in neural network history

Foundations

1943 — McCulloch-
Pitts neuron

1958 — Perceptron
(Rosenblatt)

1969 — Perceptrons
book — Al Winter

Revival

1986 —

Backpropagation

1990 — Elman RNNs
1997 — LSTM
(Hochreiter &

Schmidhuber)

Modern Era

2012 — AlexNet —
Deep learning
revolution

2017 — Transformer

architecture
2018 — BERT, GPT
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Summary: Neural Networks - Key Takeaways

e Architecture: Networks of neurons organized in layers; feedforward
Vs. recurrent

e Learning: Supervised learning minimizes loss via gradient descent
e Backpropagation: Efficient gradient computation using the chain rule

e Optimization: SGD, Adam; regularization (dropout, L2) prevents
overfitting

e Challenges: Vanishing/exploding gradients addressed by careful
design

e Applications: Text classification, language modeling, and beyond
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Questions?

Coming up next: Transformers and attention mechanisms

Resources:

e Goodfellow et al. Deep Learning (free online)

e 3BluelBrown neural network videos (visual intuition)

e PyTorch tutorials (hands-on practice)
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