
Vector Semantics and Embeddings
Robert Minneker

2026-01-22

1CSE 447/517 26wi - NLP

Sources
Content derived from: J&M Ch. 5

2CSE 447/517 26wi - NLP

Part 0: Perplexity Review

3CSE 447/517 26wi - NLP

Why do we need perplexity?

😌
Low Perplexity
"I expected that!"

Model assigns high probability

😳
High Perplexity

"That surprised me!"
Model assigns low probability

How do we know if one language model is better than another?
We need a metric that measures how well a model predicts real
language
Perplexity: “How surprised is the model by the test data?”

4CSE 447/517 26wi - NLP

Quick refresher: Types of means
Mean Formula When to use
Arithmetic Averaging additive quantities

(heights, test scores)
Geometric Averaging multiplicative

quantities (probabilities) ←
perplexity!

Harmonic Averaging rates (speeds, F1-
score)

Quadratic
(RMS)

When magnitude matters
more than sign (voltage,
RMSE)

1
n ∑

n
i=1 xi

n
√
∏

n
i=1 xi

n

∑

n
i=1

1
xi

√

1
n ∑

n
i=1 x

2
i

5CSE 447/517 26wi - NLP

The core intuition: Branching factor

PP = 100

the

"Which of 100 words?"
Each word ~1% likely

PP = 10

thank

you

"Probably 'you'!"
Model is confident

Perplexity = “effective number of choices” at each word
If model has perplexity 100 → as uncertain as choosing among 100
equally likely options

6CSE 447/517 26wi - NLP

From probability to perplexity: The math

Definition: Perplexity = geometric mean of inverse probabilities

Key equivalence: This equals exponentiated cross-entropy!

For a test sequence :W = w1,w2, … ,wN

PP(W) = N

N

∏

i=1

1

P(wi ∣ wi−1)
= (

N

∏

i=1

P(wi ∣ wi−1))

− 1
N





⎷

PP(W) = P(W)− 1
N = 2− 1

N
log2 P(W) = 2− 1

N
∑

N
i=1 log2 P(wi∣wi−1) = 2H(W)

7CSE 447/517 26wi - NLP

Why are these equivalent?

PP(W) = (

N

∏

i=1

P(wi ∣ wi−1))

− 1
N

(definition: geometric mean)

= P(W)− 1
N (chain rule: product = P(W))

= 2log2(P(W)− 1
N) (identity: x = 2log2 x)

= 2− 1
N

log2 P(W) (log power rule)

= 2− 1
N
∑

N
i=1 log2 P(wi∣wi−1) (log of product = sum of logs)

= (definition of cross-entropy)2H(W)

8CSE 447/517 26wi - NLP

Perplexity over a test sentence
For a single sentence :W = w1w2 ⋯wN

PP(W) = P(w1w2 ⋯wN)− 1
N = N

√

1

P(w1w2 ⋯wN)

9CSE 447/517 26wi - NLP

Perplexity over a test corpus (in practice)
Problem: Multiplying thousands of probabilities → numerical underflow!
Solution: Work in log space — sum losses, normalize, exponentiate

Algorithm: Keep running sum of losses → divide by → exponentiate

PP(corpus) = exp (−
1

N

N

∑

i=1

logP(wi ∣ contexti))

= exp
1

N

N

∑

i=1

− logP(wi ∣ contexti)

lossi

= exp (

1

N

N

∑

i=1

lossi) = exp(avg loss)

⎛

⎜

⎝



⎞

⎟

⎠

N

10CSE 447/517 26wi - NLP

Cross-entropy is your training loss!

During training...
loss = F.cross_entropy(logits, targets) # This IS H(W)!

To get perplexity:
perplexity = torch.exp(loss) # PP = e^H (natural log)
or equivalently:
perplexity = 2 ** (loss / math.log(2)) # PP = 2^H (log
base 2)

Key insight: When you minimize cross-entropy loss, you're directly
minimizing perplexity. Lower loss = lower perplexity = better
language model.

In PyTorch, you’re already optimizing perplexity:

11CSE 447/517 26wi - NLP

What’s a “good” perplexity? Benchmark context

1

Perfect

~12

Human
(estimate)

~20

Transformer
(PTB)

~35

GPT-2
(WebText)

~80

LSTM

~140

Trigram

10k+

Random

← Lower is better

Benchmark Trigram LSTM Transformer
Penn Treebank ~140 ~80 ~20
WikiText-103 ~150 ~48 ~18

12CSE 447/517 26wi - NLP

Part 1: Foundations of
Vector Semantics

13CSE 447/517 26wi - NLP

“You shall know a word by the company it keeps” —
Firth

🏦
bank

near: money, account,
deposit, loan, interest

≠
🌊
bank

near: river, shore,
water, fish, erosion

Words are characterized by their distributional properties, not in
isolation
“Bank” near “river” vs. “bank” near “money” reveals context-
dependent meaning

14CSE 447/517 26wi - NLP

The distributional hypothesis
Harris (1954): If two words appear in similar contexts, their meanings
are likely similar

contexts(w1) ≈ contexts(w2) ⟹ meaning(w1) ≈ meaning(w2)

No dictionary definitions needed—meaning emerges from usage
patterns

15CSE 447/517 26wi - NLP

The antonyms problem: A limitation

Key limitation: Distributional similarity captures topical relatedness, not
all aspects of meaning. Antonyms, hypernyms, and other semantic
relations need additional modeling.

“Hot” and “cold” appear in very similar contexts:
“The water was ___”
“It’s ___ outside today”
“___ temperature”, “___ weather”

But they have opposite meanings!

16CSE 447/517 26wi - NLP

Each word maps to a vector in semantic space

grape

raisin

apple

vine

tree
fruits

plants

Vocabulary ; each word maps to V w ∈ V vw ∈ R
d

Similar contexts → nearby vectors → similar meanings

17CSE 447/517 26wi - NLP

Cosine similarity measures semantic closeness

grape

raisin

θ (small)

cos(θ) ≈ 0.95 → very similar

sim(w1,w2) = cos(θ) =
vw1 ⋅ vw2

∥vw1∥∥vw2∥

Direction matters more than magnitude for meaning

18CSE 447/517 26wi - NLP

Vector arithmetic captures relationships

grape

vine

apple

tree

grows on grows on

Same relationship = parallel vectors = parallelogram!

Relationships encoded as directions in embedding space

→vgrape − →vvine + →vtree ≈ →vapple

19CSE 447/517 26wi - NLP

The Conceptual Leap: Meaning Becomes Geometry

A Paradigm Shift in Linguistics

Traditional View
Meaning = symbolic definitions →

Vector Semantics
Meaning = position in space

Why this matters:

"cat" defined by features:
+animate, +furry, +feline...

"cat" = [0.2, -0.5, 0.8, ...]
300 learned dimensions

Semantic operations become mathematical operations
Similarity → distance/angle; Analogy → vector arithmetic
Meaning can be computed, not just looked up
Enables generalization to unseen combinations

20CSE 447/517 26wi - NLP

Part 2: Classical Count-
Based Methods

21CSE 447/517 26wi - NLP

TF-IDF: The Document Retrieval Baseline

High TF-IDF
"photosynthesis" in a biology paper
→ Frequent here, rare elsewhere
→ Discriminative

Low TF-IDF
"the" in any document
→ Frequent everywhere
→ Not informative

Limitation: TF-IDF captures document-level topicality, not fine-grained
word similarity

Term Frequency (TF): How often does word appear in document ?w d

Inverse Document Frequency (IDF): How rare is word across all
documents?

w

TF-IDF(w, d) = TF(w, d) × log
|D|

DF(w)

22CSE 447/517 26wi - NLP

Term-document matrices

Doc 1
wine review

Doc 2
botany text

Doc 3
recipe

grape 15 8 3

wine 25 2 5

tree 0 18 1

"grape" vector: [15, 8, 3] → similar to "wine" [25, 2, 5]

Matrix where counts word in document X ∈ R
|V |×|D| Xwd w d

Each word = high-dimensional, sparse vector

23CSE 447/517 26wi - NLP

Word-context matrices with sliding windows

 fresh grape juice
Window ±1: fresh, juice → syntactic neighbors
Window ±5: The, fresh, juice, tastes, great → topical neighbors

Matrix : = count of near C ∈ R
|V |×|V | Cwv v w

Window size controls what “near” means

The tastes great

24CSE 447/517 26wi - NLP

PMI: Measuring association strength
Pointwise Mutual Information: How much more often do words co-
occur than expected?

Corpus: 1000 word pairs

 bits

Interpretation: 8× more likely than chance → strong association!

PMI(w, c) = log2
P(w, c)

P(w) ⋅ P(c)

Worked example

“grape” appears in 20 pairs
“wine” appears in 50 pairs
“grape-wine” co-occurs 8 times

P(grape, wine) = 8/1000 = 0.008

P(grape) × P(wine) = 0.02 × 0.05 = 0.001

PMI = log2(0.008/0.001) = log2(8) = 3

25CSE 447/517 26wi - NLP

PPMI: Fixing negative infinity
Problem with PMI: If , then
Solution: Positive PMI (PPMI) — clip negative values to zero

Why clip at zero? PPMI Matrix

P(w, c) = 0 PMI = −∞

PPMI(w, c) = max(0, PMI(w, c))

Negative PMI often unreliable
(sparse data)
“Never co-occurred” ≠
“semantically opposite”
Zeros are easier to handle
(sparse matrices)

Sparse (mostly zeros)
High-dimensional ()|V | × |V |

Better than raw counts
Foundation for SVD/LSA

26CSE 447/517 26wi - NLP

LSA: Dimensionality reduction reveals latent
structure

X

sparse, noisy

SVD
U Σ VT truncate

X
k

dense, clean

SVD factorizes the matrix: X = UΣV T

Truncate to dimensions: keeps most important patternsk

“Grape” and “vineyard” become close even without direct co-
occurrence
Shared contexts (“wine”, “harvest”) create latent similarity

27CSE 447/517 26wi - NLP

Part 3: Neural Embedding
Methods

28CSE 447/517 26wi - NLP

Historical timeline: The evolution of embeddings

1954

Harris
distributional

1988

LSA

2003

Bengio
neural LM

2013

Word2Vec
revolution!

2014

GloVe

2017

Transformer

2018+

BERT, GPT

29CSE 447/517 26wi - NLP

Word2Vec: A Framework, Not a Single Algorithm

Word2Vec = Framework with Multiple Components

Architectures
• SGNS: Skip-gram + Negative
Sampling
• CBOW: Continuous Bag of
Words

Training Tricks
• Negative sampling
• Hierarchical softmax
• Subsampling frequent words

Key insight: Mikolov et al. (2013) introduced a family of methods, not
one algorithm

“Word2Vec” often refers to SGNS specifically (the most popular
variant)
Both architectures learn by predicting rather than counting

30CSE 447/517 26wi - NLP

Skip-Gram with Negative Sampling (SGNS)
Core idea: Given a target word, predict its context words

Input word

"grape"

lookup Target embedding

vgrape

Context (+)
"wine"

Context (+)
"fresh"

Negative (−)
"democracy"

Negative (−)
"elephant"

σ(v·c) → 1

σ(v·c) → 1

σ(v·c) → 0

σ(v·c) → 0

Push together

Push apart

31CSE 447/517 26wi - NLP

Continuous Bag of Words (CBOW)
Core idea: Given context words, predict the target word

"The"

"fresh"

"juice"

"tastes"

AVG
or SUM

Context vector

h = Σv
c
/|C|

Predict target

"grape"
Context window

32CSE 447/517 26wi - NLP

CBOW vs Skip-gram:
Aspect CBOW Skip-gram (SGNS)
Input Context words Target word
Output Target word Context words
Speed Faster (1 prediction) Slower (k predictions)
Rare words Worse Better

33CSE 447/517 26wi - NLP

The Deep Connection: SGNS ≈ Implicit PMI
Factorization

What this means:

Levy & Goldberg (2014): A Landmark Discovery

SGNS implicitly factorizes: W ⋅ W
′T ≈ PMI(w, c) − log k

Skip-gram with negative sampling learns embeddings whose dot
product approximates shifted PMI
The “prediction” objective recovers the same statistical information as
“counting”
Neural and count-based methods are two sides of the same coin

34CSE 447/517 26wi - NLP

Methods Comparison: The Full Picture
Method What it captures Matrix factorized Training
TF-IDF Document-level

topicality
Weighted term-doc Direct

computation
PMI/PPMI
+ SVD

Word co-
occurrence
strength

PPMI matrix Count →
SVD

Word2Vec
(SGNS)

Shifted PMI
(implicitly)

SGD
prediction

GloVe Log co-occurrence
(explicit)

 weighted SGD
regression

PMI − log k

logX

35CSE 447/517 26wi - NLP

GloVe: Explicit Global Optimization
GloVe’s insight: If SGNS implicitly factorizes PMI, why not do it
explicitly?

Word2Vec (SGNS) GloVe

Result: Similar embeddings, different training dynamics

Learns by predicting context
Stochastic: samples (word,
context) pairs
Implicitly factorizes PMI
Online learning possible

Learns by regression on log-
counts
Batch: uses full co-occurrence
matrix
Explicitly minimizes
reconstruction error
Weighted by to handle
frequent pairs

f(Xij)

36CSE 447/517 26wi - NLP

Static vs contextualized embeddings
Static (Word2Vec, GloVe)

“The bank was steep”
→ [0.2, -0.5, …]
“The bank was closed”
→ [0.2, -0.5, …]
Same vector!

Contextualized (BERT)

“The bank was steep”
→ [0.3, 0.1, …]
“The bank was closed”
→ [-0.2, 0.4, …]
Different vectors!

f : V → R
d f : (w,C) → R

d

37CSE 447/517 26wi - NLP

Transformers: Self-attention for contextualization

Why might word analogy tasks (grape - vine + tree = apple) work BETTER with static embeddings
than contextualized ones?

Attention(Q,K,V) = softmax(
QK T

√dk
)V

Every token attends to every other token
Multiple layers refine representations
Pre-training: Masked LM (BERT), autoregressive (GPT)

Concept Check

38CSE 447/517 26wi - NLP

Part 4: Evaluation

39CSE 447/517 26wi - NLP

Similarity vs. relatedness: Know what you’re
measuring
Word Pair WordSim-353

(relatedness)
SimLex-999
(similarity)

car - gasoline HIGH LOW

coffee - cup HIGH LOW

car - automobile HIGH HIGH

Relatedness (WordSim): Are these words associated?
Similarity (SimLex): Are these words interchangeable?

40CSE 447/517 26wi - NLP

When analogies fail

doctor - man + woman = ? Often returns "nurse" (bias!)
Paris - France + Japan = ? Sometimes "Tokyo", often noise
bigger - big + small = ? Rarely returns "smaller"

Reality check: Google analogy dataset accuracy is ~60-75%, not 95%.
Analogy arithmetic is a useful probe, not a reliable tool.

“king - man + woman = queen” is the famous success story
But many analogies don’t work:

41CSE 447/517 26wi - NLP

Extrinsic evaluation: The real test

Task Without
pretrained

With
Word2Vec

With
BERT

Sentiment 78% 84% 93%
NER 81% 88% 95%
Question
Answering

65% 72% 89%

Intrinsic: How good are the embeddings themselves?
Extrinsic: How much do embeddings help downstream tasks?

42CSE 447/517 26wi - NLP

Part 5: Ethics and Bias

43CSE 447/517 26wi - NLP

Embeddings encode societal biases

Male direction

he him

man

Female direction

she her

woman
programmer

engineer

nurse
teacher

Occupation words show systematic gender associations

Training data reflects historical biases
Embeddings learn and amplify these patterns

44CSE 447/517 26wi - NLP

WEAT: Measuring embedding bias

Example:
X = {programmer, engineer, scientist}
Y = {nurse, teacher, librarian}
A = {he, him, man}
B = {she, her, woman}

Finding: X more associated with A; Y more associated with B → gender bias

s(X,Y ,A,B) =
1

|X|
∑

x∈X

s(x,A,B) −
1

|Y |
∑

y∈Y

s(y,A,B)

Compare associations between word sets and attribute sets
Parallels the psychological Implicit Association Test (IAT)

45CSE 447/517 26wi - NLP

Debiasing: Partial solutions

Projection method
1. Identify "gender direction"
2. Project it out of all word vectors
3. "programmer" moves to neutral
position

Limitations
• May hide rather than remove bias
• Some words "should" be gendered
• Bias can reappear in fine-tuning

If occupation words like “engineer” are closer to “man” than “woman” in embedding space:

Discussion

1. What downstream harms might this cause? (Think: hiring systems, search engines)
2. Can we ever create a truly “unbiased” language model?
3. Who should decide what counts as bias?

46CSE 447/517 26wi - NLP

Summary
The Paradigm Shift
Meaning → Geometry
Semantic ops → Vector ops

Word2Vec = Framework
SGNS, CBOW architectures
Implicitly factorizes PMI

Methods Unified
TF-IDF → PMI → Word2Vec → GloVe
Count ↔ Prediction equivalence

Limitations & Ethics
Antonyms problem, analogy failures
Embeddings encode societal bias

Key takeaway: Vector semantics transforms meaning into geometry—
powerful but imperfect.

47CSE 447/517 26wi - NLP

