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Sources
Content derived from: J&M Ch. 5
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Part 0: Perplexity Review
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Why do we need perplexity?

😌
Low Perplexity
"I expected that!"

Model assigns high probability

😳
High Perplexity

"That surprised me!"
Model assigns low probability

How do we know if one language model is better than another?
We need a metric that measures how well a model predicts real
language
Perplexity: “How surprised is the model by the test data?”
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Quick refresher: Types of means
Mean Formula When to use
Arithmetic Averaging additive quantities

(heights, test scores)
Geometric Averaging multiplicative

quantities (probabilities) ←
perplexity!

Harmonic Averaging rates (speeds, F1-
score)

Quadratic
(RMS)

When magnitude matters
more than sign (voltage,
RMSE)
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The core intuition: Branching factor

PP = 100

the

"Which of 100 words?"
Each word ~1% likely

PP = 10

thank

you

"Probably 'you'!"
Model is confident

Perplexity = “effective number of choices” at each word
If model has perplexity 100 → as uncertain as choosing among 100
equally likely options
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From probability to perplexity: The math

Definition: Perplexity = geometric mean of inverse probabilities

Key equivalence: This equals exponentiated cross-entropy!

For a test sequence :W = w1,w2, … ,wN

PP(W) = N

N

∏

i=1

1

P(wi ∣ wi−1)
= (

N

∏

i=1

P(wi ∣ wi−1))

− 1
N





⎷

PP(W) = P(W)− 1
N = 2− 1

N
log2 P(W) = 2− 1

N
∑

N
i=1 log2 P(wi∣wi−1) = 2H(W)
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Why are these equivalent?

PP(W) = (

N

∏

i=1

P(wi ∣ wi−1))

− 1
N

(definition: geometric mean)

= P(W)− 1
N (chain rule: product = P(W))

= 2log2(P(W)− 1
N ) (identity: x = 2log2 x)

= 2− 1
N

log2 P(W) (log power rule)

= 2− 1
N
∑

N
i=1 log2 P(wi∣wi−1) (log of product = sum of logs)

= (definition of cross-entropy)2H(W)
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Perplexity over a test sentence
For a single sentence :W = w1w2 ⋯wN

PP(W) = P(w1w2 ⋯wN)− 1
N = N

√

1

P(w1w2 ⋯wN)
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Perplexity over a test corpus (in practice)
Problem: Multiplying thousands of probabilities → numerical underflow!
Solution: Work in log space — sum losses, normalize, exponentiate

Algorithm: Keep running sum of losses → divide by  → exponentiate

PP(corpus) = exp (−
1

N

N

∑

i=1

logP(wi ∣ contexti))

= exp
1

N

N

∑

i=1

− logP(wi ∣ contexti)

lossi

= exp (

1

N

N
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lossi) = exp(avg loss)
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Cross-entropy is your training loss!

# During training...
loss = F.cross_entropy(logits, targets) # This IS H(W)!

# To get perplexity:
perplexity = torch.exp(loss) # PP = e^H (natural log)
# or equivalently:
perplexity = 2 ** (loss / math.log(2)) # PP = 2^H (log
base 2)

Key insight: When you minimize cross-entropy loss, you're directly
minimizing perplexity. Lower loss = lower perplexity = better
language model.

In PyTorch, you’re already optimizing perplexity:
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What’s a “good” perplexity? Benchmark context

1

Perfect

~12

Human
(estimate)

~20

Transformer
(PTB)

~35

GPT-2
(WebText)

~80

LSTM

~140

Trigram

10k+

Random

← Lower is better

Benchmark Trigram LSTM Transformer
Penn Treebank ~140 ~80 ~20
WikiText-103 ~150 ~48 ~18
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Part 1: Foundations of
Vector Semantics
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“You shall know a word by the company it keeps” —
Firth

🏦
bank

near: money, account,
deposit, loan, interest

≠
🌊
bank

near: river, shore,
water, fish, erosion

Words are characterized by their distributional properties, not in
isolation
“Bank” near “river” vs. “bank” near “money” reveals context-
dependent meaning
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The distributional hypothesis
Harris (1954): If two words appear in similar contexts, their meanings
are likely similar

contexts(w1) ≈ contexts(w2) ⟹ meaning(w1) ≈ meaning(w2)

No dictionary definitions needed—meaning emerges from usage
patterns
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The antonyms problem: A limitation

Key limitation: Distributional similarity captures topical relatedness, not
all aspects of meaning. Antonyms, hypernyms, and other semantic
relations need additional modeling.

“Hot” and “cold” appear in very similar contexts:
“The water was ___”
“It’s ___ outside today”
“___ temperature”, “___ weather”

But they have opposite meanings!
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Each word maps to a vector in semantic space

grape

raisin

apple

vine

tree
fruits

plants

Vocabulary ; each word  maps to V w ∈ V vw ∈ R
d

Similar contexts → nearby vectors → similar meanings
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Cosine similarity measures semantic closeness

grape

raisin

θ (small)

cos(θ) ≈ 0.95 → very similar

sim(w1,w2) = cos(θ) =
vw1 ⋅ vw2

∥vw1∥∥vw2∥

Direction matters more than magnitude for meaning
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Vector arithmetic captures relationships

grape

vine

apple

tree

grows on grows on

Same relationship = parallel vectors = parallelogram!

Relationships encoded as directions in embedding space

→vgrape − →vvine + →vtree ≈ →vapple
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The Conceptual Leap: Meaning Becomes Geometry

A Paradigm Shift in Linguistics

Traditional View
Meaning = symbolic definitions →

Vector Semantics
Meaning = position in space

Why this matters:

"cat" defined by features:
+animate, +furry, +feline...

"cat" = [0.2, -0.5, 0.8, ...]
300 learned dimensions

Semantic operations become mathematical operations
Similarity → distance/angle; Analogy → vector arithmetic
Meaning can be computed, not just looked up
Enables generalization to unseen combinations
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Part 2: Classical Count-
Based Methods
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TF-IDF: The Document Retrieval Baseline

High TF-IDF
"photosynthesis" in a biology paper
→ Frequent here, rare elsewhere
→ Discriminative

Low TF-IDF
"the" in any document
→ Frequent everywhere
→ Not informative

Limitation: TF-IDF captures document-level topicality, not fine-grained
word similarity

Term Frequency (TF): How often does word  appear in document ?w d

Inverse Document Frequency (IDF): How rare is word  across all
documents?

w

TF-IDF(w, d) = TF(w, d) × log
|D|

DF(w)
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Term-document matrices

Doc 1
wine review

Doc 2
botany text

Doc 3
recipe

grape 15 8 3

wine 25 2 5

tree 0 18 1

"grape" vector: [15, 8, 3] → similar to "wine" [25, 2, 5]

Matrix  where  counts word  in document X ∈ R
|V |×|D| Xwd w d

Each word = high-dimensional, sparse vector
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Word-context matrices with sliding windows

 fresh grape  juice 
Window ±1: fresh, juice → syntactic neighbors
Window ±5: The, fresh, juice, tastes, great → topical neighbors

Matrix :  = count of  near C ∈ R
|V |×|V | Cwv v w

Window size controls what “near” means

The tastes great
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PMI: Measuring association strength
Pointwise Mutual Information: How much more often do words co-
occur than expected?

Corpus: 1000 word pairs

 bits

Interpretation: 8× more likely than chance → strong association!

PMI(w, c) = log2
P(w, c)

P(w) ⋅ P(c)

Worked example

“grape” appears in 20 pairs
“wine” appears in 50 pairs
“grape-wine” co-occurs 8 times

P(grape, wine) = 8/1000 = 0.008

P(grape) × P(wine) = 0.02 × 0.05 = 0.001

PMI = log2(0.008/0.001) = log2(8) = 3
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PPMI: Fixing negative infinity
Problem with PMI: If , then 
Solution: Positive PMI (PPMI) — clip negative values to zero

Why clip at zero? PPMI Matrix

P(w, c) = 0 PMI = −∞

PPMI(w, c) = max(0, PMI(w, c))

Negative PMI often unreliable
(sparse data)
“Never co-occurred” ≠
“semantically opposite”
Zeros are easier to handle
(sparse matrices)

Sparse (mostly zeros)
High-dimensional ( )|V | × |V |

Better than raw counts
Foundation for SVD/LSA
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LSA: Dimensionality reduction reveals latent
structure

X

sparse, noisy

SVD
U Σ VT truncate

X
k

dense, clean

SVD factorizes the matrix: X = UΣV T

Truncate to  dimensions: keeps most important patternsk

“Grape” and “vineyard” become close even without direct co-
occurrence
Shared contexts (“wine”, “harvest”) create latent similarity
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Part 3: Neural Embedding
Methods
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Historical timeline: The evolution of embeddings

1954

Harris
distributional

1988

LSA

2003

Bengio
neural LM

2013

Word2Vec
revolution!

2014

GloVe

2017

Transformer

2018+

BERT, GPT
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Word2Vec: A Framework, Not a Single Algorithm

Word2Vec = Framework with Multiple Components

Architectures
• SGNS: Skip-gram + Negative
Sampling
• CBOW: Continuous Bag of
Words

Training Tricks
• Negative sampling
• Hierarchical softmax
• Subsampling frequent words

Key insight: Mikolov et al. (2013) introduced a family of methods, not
one algorithm

“Word2Vec” often refers to SGNS specifically (the most popular
variant)
Both architectures learn by predicting rather than counting
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Skip-Gram with Negative Sampling (SGNS)
Core idea: Given a target word, predict its context words

Input word

"grape"

lookup Target embedding

vgrape

Context (+)
"wine"

Context (+)
"fresh"

Negative (−)
"democracy"

Negative (−)
"elephant"

σ(v·c) → 1

σ(v·c) → 1

σ(v·c) → 0

σ(v·c) → 0

Push together

Push apart
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Continuous Bag of Words (CBOW)
Core idea: Given context words, predict the target word

"The"

"fresh"

"juice"

"tastes"

AVG
or SUM

Context vector

h = Σv
c
/|C|

Predict target

"grape"
Context window

32CSE 447/517 26wi - NLP



CBOW vs Skip-gram:
Aspect CBOW Skip-gram (SGNS)
Input Context words Target word
Output Target word Context words
Speed Faster (1 prediction) Slower (k predictions)
Rare words Worse Better
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The Deep Connection: SGNS ≈ Implicit PMI
Factorization

What this means:

Levy & Goldberg (2014): A Landmark Discovery

SGNS implicitly factorizes: W ⋅ W
′T ≈ PMI(w, c) − log k

Skip-gram with negative sampling learns embeddings whose dot
product approximates shifted PMI
The “prediction” objective recovers the same statistical information as
“counting”
Neural and count-based methods are two sides of the same coin
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Methods Comparison: The Full Picture
Method What it captures Matrix factorized Training
TF-IDF Document-level

topicality
Weighted term-doc Direct

computation
PMI/PPMI
+ SVD

Word co-
occurrence
strength

PPMI matrix Count →
SVD

Word2Vec
(SGNS)

Shifted PMI
(implicitly)

SGD
prediction

GloVe Log co-occurrence
(explicit)

 weighted SGD
regression

PMI − log k

logX
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GloVe: Explicit Global Optimization
GloVe’s insight: If SGNS implicitly factorizes PMI, why not do it
explicitly?

Word2Vec (SGNS) GloVe

Result: Similar embeddings, different training dynamics

Learns by predicting context
Stochastic: samples (word,
context) pairs
Implicitly factorizes PMI
Online learning possible

Learns by regression on log-
counts
Batch: uses full co-occurrence
matrix
Explicitly minimizes
reconstruction error
Weighted by  to handle
frequent pairs

f(Xij)
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Static vs contextualized embeddings
Static (Word2Vec, GloVe)

“The bank was steep”
→ [0.2, -0.5, …]
“The bank was closed”
→ [0.2, -0.5, …]
Same vector!

Contextualized (BERT)

“The bank was steep”
→ [0.3, 0.1, …]
“The bank was closed”
→ [-0.2, 0.4, …]
Different vectors!

f : V → R
d f : (w,C) → R

d
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Transformers: Self-attention for contextualization

Why might word analogy tasks (grape - vine + tree = apple) work BETTER with static embeddings
than contextualized ones?

Attention(Q,K,V ) = softmax(
QK T

√dk
)V

Every token attends to every other token
Multiple layers refine representations
Pre-training: Masked LM (BERT), autoregressive (GPT)

Concept Check
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Part 4: Evaluation
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Similarity vs. relatedness: Know what you’re
measuring
Word Pair WordSim-353

(relatedness)
SimLex-999
(similarity)

car - gasoline HIGH LOW

coffee - cup HIGH LOW

car - automobile HIGH HIGH

Relatedness (WordSim): Are these words associated?
Similarity (SimLex): Are these words interchangeable?
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When analogies fail

doctor - man + woman = ? Often returns "nurse" (bias!)
Paris - France + Japan = ? Sometimes "Tokyo", often noise
bigger - big + small = ? Rarely returns "smaller"

Reality check: Google analogy dataset accuracy is ~60-75%, not 95%.
Analogy arithmetic is a useful probe, not a reliable tool.

“king - man + woman = queen” is the famous success story
But many analogies don’t work:
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Extrinsic evaluation: The real test

Task Without
pretrained

With
Word2Vec

With
BERT

Sentiment 78% 84% 93%
NER 81% 88% 95%
Question
Answering

65% 72% 89%

Intrinsic: How good are the embeddings themselves?
Extrinsic: How much do embeddings help downstream tasks?
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Part 5: Ethics and Bias
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Embeddings encode societal biases

Male direction

he him

man

Female direction

she her

woman
programmer

engineer

nurse
teacher

Occupation words show systematic gender associations

Training data reflects historical biases
Embeddings learn and amplify these patterns
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WEAT: Measuring embedding bias

Example:
X = {programmer, engineer, scientist}
Y = {nurse, teacher, librarian}
A = {he, him, man}
B = {she, her, woman}

Finding: X more associated with A; Y more associated with B → gender bias

s(X,Y ,A,B) =
1

|X|
∑

x∈X

s(x,A,B) −
1

|Y |
∑

y∈Y

s(y,A,B)

Compare associations between word sets and attribute sets
Parallels the psychological Implicit Association Test (IAT)
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Debiasing: Partial solutions

Projection method
1. Identify "gender direction"
2. Project it out of all word vectors
3. "programmer" moves to neutral
position

Limitations
• May hide rather than remove bias
• Some words "should" be gendered
• Bias can reappear in fine-tuning

If occupation words like “engineer” are closer to “man” than “woman” in embedding space:

Discussion

1. What downstream harms might this cause? (Think: hiring systems, search engines)
2. Can we ever create a truly “unbiased” language model?
3. Who should decide what counts as bias?
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Summary
The Paradigm Shift
Meaning → Geometry
Semantic ops → Vector ops

Word2Vec = Framework
SGNS, CBOW architectures
Implicitly factorizes PMI

Methods Unified
TF-IDF → PMI → Word2Vec → GloVe
Count ↔ Prediction equivalence

Limitations & Ethics
Antonyms problem, analogy failures
Embeddings encode societal bias

Key takeaway: Vector semantics transforms meaning into geometry—
powerful but imperfect.

47CSE 447/517 26wi - NLP


