
N-gram Language Models
Rob Minneker

2026-01-20

1CSE 447/517 26wi - NLP

Sources
Content derived from: J&M Ch. 3

2CSE 447/517 26wi - NLP

Part 0: The Language
Modeling Problem

3CSE 447/517 26wi - NLP

What is a language model?
A language model assigns probabilities to sequences of words
For any sequence , we want to compute:w1, w2, … , wn

P(w1, w2, … , wn)

This defines a probability distribution over language
Higher probability = more “likely” or “natural” sequence

4CSE 447/517 26wi - NLP

The language modeling task
Given a sequence of words...

The students opened their ?

...predict the next word (or assign probability to possible
continuations)

books
P = 0.35

laptops
P = 0.22

minds
P = 0.15

refrigerator
P = 0.0001

5CSE 447/517 26wi - NLP

Why model probability distributions over language?
Speech recognition: Which word sequence best matches the audio?

“recognize speech” vs “wreck a nice beach”
Machine translation: Which translation sounds most natural?
Text generation: Sample from the distribution to produce text
Spelling/grammar correction: Find the most probable intended
sequence
Information retrieval: Score document relevance

6CSE 447/517 26wi - NLP

The fundamental challenge: Language is infinite

Number of atoms in the observable universe:

~1080

Vocabulary has words (e.g., 50,000)V |V |

Possible bigrams: |V |2 = 2.5 × 109

Possible 10-word sentences: |V |10 ≈ 1047

We can never observe all possible sentences
Yet we must assign probabilities to every possible sequence

7CSE 447/517 26wi - NLP

The solution: Decompose using the chain rule
Joint probability of a sequence can be decomposed:

P(w1, w2, … , wn) =
n

∏

i=1

P(wi ∣ w1, … , wi−1)

Example: P(the cat sat) = P(the) × P(cat ∣ the) × P(sat ∣ the cat)

But: Each conditional still depends on unbounded history!
Key insight: Approximate by limiting history (Markov assumption)

8CSE 447/517 26wi - NLP

Part 1: Foundations of N-
gram Language Models

9CSE 447/517 26wi - NLP

N-gram models predict words using only the
previous N-1 words as context

An N-gram model estimates P(wn ∣ wn−(N−1), … , wn−1)

The conditional probability captures how likely the next word is given
recent context
This formulation embodies a key simplifying assumption about
language

10CSE 447/517 26wi - NLP

Trigrams condition on two preceding words to
predict the next

Example: P(‘processing’ ∣ ‘natural’, ‘language’)

The model assumes: recent context is sufficient for prediction
This enables efficient, statistical prediction for speech recognition, text
generation, and spelling correction

11CSE 447/517 26wi - NLP

The chain rule decomposes sentence probability into
conditional factors

Joint probability of a sentence :w = w1, w2, … , wT

P(w) ≈
T

∏

n=1

P(wn ∣ wn−(N−1), … , wn−1)

Each factor depends only on a fixed-size context window
This approximation makes computation tractable

12CSE 447/517 26wi - NLP

Chain rule in action: Bigram factorization

P("the cat sat") =

start → first word
P(the | ⟨s⟩) × first → second

P(cat | the) × second → third
P(sat | cat) ×

end marker
P(⟨/s⟩ | sat)

Each factor uses only one word of context (bigram
assumption)

13CSE 447/517 26wi - NLP

Different values of N trade off context richness
against data sparsity

Unigrams (): — no context at allN = 1 P(wn)

Bigrams (): — one word of contextN = 2 P(wn ∣ wn−1)

Trigrams (): — two words of contextN = 3 P(wn ∣ wn−2, wn−1)

14CSE 447/517 26wi - NLP

Visualizing context windows: What each model
“sees”
Sentence: The cat sat on the mat

Unigram: The cat sat on the ? P(mat)
Bigram: The cat sat on the ? P(mat | the)
Trigram: The cat sat on the ? P(mat | on, the)

If you have a vocabulary of 10,000 words, how many possible bigrams exist? How many trigrams?
What does this imply for data requirements?

Concept Check

15CSE 447/517 26wi - NLP

Standard notation enables reproducible model
specification

: vocabulary set; is vocabulary sizeV |V |

, : special tokens for sentence boundaries⟨s⟩ ⟨/s⟩

Proper notation clarifies assumptions and enables fair comparison

16CSE 447/517 26wi - NLP

The Markov assumption limits dependence to the k
most recent words

Order- Markov assumption:k

P(wn ∣ w1, … , wn−1) ≈ P(wn ∣ wn−k, … , wn−1)

This reduces unbounded context to a fixed-length window of size k

The model “forgets” everything before the window

17CSE 447/517 26wi - NLP

The Markov window “forgets” everything outside its
scope
Sentence: The quick brown fox jumps over the lazy dog

k=1: The quick brown fox jumps over the lazy ? P(dog | lazy)

k=2: The quick brown fox jumps over the lazy ? P(dog | the,
lazy)

k=4: The quick brown fox jumps over the lazy ?
P(dog | jumps,
over, the,
lazy)

Crossed out = forgotten by the model (Markov
"memoryless" property)

18CSE 447/517 26wi - NLP

Independence assumptions make parameter
estimation feasible

For trigrams: P(w4 ∣ w1, w2, w3) ≈ P(w4 ∣ w2, w3)

Parameters grow polynomially with , not exponentially with sequence
length

k

Finite corpora can reliably estimate a tractable number of parameters

19CSE 447/517 26wi - NLP

Markov models cannot capture long-range linguistic
dependencies

Subject-verb agreement across clauses requires longer context
Anaphora resolution (pronoun references) often spans many words
These limitations motivate RNNs and Transformers

20CSE 447/517 26wi - NLP

Long-range dependencies: What trigrams miss
" The keys to the cabinet in the corner of the room are on the table."

keys (plural) are (plural)

8 words apart!

Trigram window: sees only " room are" — no access to "keys"

21CSE 447/517 26wi - NLP

Markov pioneered statistical text analysis in 1913
A. A. Markov demonstrated word sequences exhibit capturable
dependencies
Modeled transitions: P(wn ∣ wn−1)

Introduced the “memoryless” property: future depends only on recent
past

22CSE 447/517 26wi - NLP

Chomsky’s formal grammars revealed hierarchical
language structure

1956: Proposed finite-state, context-free, and context-sensitive
grammars
Emphasized recursive and hierarchical structure beyond word
transitions
N-grams capture local patterns but miss deeper syntactic structure

23CSE 447/517 26wi - NLP

Modern N-gram models combine statistical
dependence with practical utility

Evolution from raw frequencies: P(w) =
count(w)

N

To conditional models: P(wn ∣ wn−1, … , wn−(n−1))

Foundation for text generation, speech recognition, and machine
translation

24CSE 447/517 26wi - NLP

Part 2: Estimation and
Smoothing

25CSE 447/517 26wi - NLP

MLE estimates probabilities by counting n-gram
occurrences

Maximum Likelihood Estimate for N-grams:

PMLE(wn ∣ wn−1, … , w1) =
C(w1, … , wn−1, wn)

C(w1, … , wn−1)

Simply divide n-gram count by context count
Intuitive and unbiased on large corpora

26CSE 447/517 26wi - NLP

MLE in action: Counting bigrams in a corpus

" I want to eat. I want to sleep. I need to go."

Bigram Counts
I want 2
want to 2

to eat 1
to sleep 1
to go 1

I need 1
need to 1

→

MLE Probabilities

P(want | I) = 2/3 = 0.67

P(need | I) = 1/3 = 0.33
P(to | want) = 2/2 = 1.00

27CSE 447/517 26wi - NLP

MLE assigns zero probability to unseen n-grams

If your training corpus never contains “quantum computing,” what probability will an MLE bigram
model assign to “quantum computing” in test data? What’s wrong with this?

If , then C(unseen bigram) = 0 PMLE = 0

Zero probability means: “impossible according to the model”
But unseen doesn’t mean impossible—just unobserved

Concept Check

28CSE 447/517 26wi - NLP

Smoothing redistributes probability mass from seen
to unseen events

Core insight: “steal” small amounts from frequent n-grams
Give that mass to rare and unseen n-grams
Result: no probability is exactly zero

29CSE 447/517 26wi - NLP

Visualizing probability redistribution
MLE

0.45 0.25 0.15 0.10 0.05
the of cat sat mat unseen

→

Smoothed

0.40 0.22 0.13 0.09 0.05 0.11
the of cat sat mat unseen

0.00

30CSE 447/517 26wi - NLP

Laplace smoothing adds a constant to all counts
Add to each count:α > 0

PLaplace(wi|wi−1) =
C(wi−1, wi) + α

C(wi−1) + α|V |

Simple but can over-smooth for large vocabularies
Often (add-one smoothing)α = 1

31CSE 447/517 26wi - NLP

Good-Turing uses frequency of frequencies to
estimate unseen mass

Key insight: count how many n-grams appear exactly timesr

Adjusted count formula:

c∗(r) =
(r + 1)Nr+1

Nr

: number of n-grams with count Nr r

Uses rare events to estimate probability of unseen events

32CSE 447/517 26wi - NLP

Good-Turing intuition: Rare events predict unseen
events
Frequency of Frequencies

(Nr)

3,241
N0

1,024
N1

512
N2

256
N3

128

N4

Nr = count of n-grams appearing r
times

→

Use N1 to
estimate N0

Key Insight

Unseen (r=0): How much
probability mass?
Singletons (r=1): 1,024 n-
grams seen exactly once

Intuition: N-grams seen
once were recently "unseen"
— they tell us about the
unseen mass

33CSE 447/517 26wi - NLP

Kneser-Ney smoothing considers context diversity,
not just frequency

A word that appears in many contexts is a better backoff candidate
Formula incorporates discount and continuation probability:D

PKN(wi|wi−1) =
max(C(wi−1, wi) − D, 0)

C(wi−1)
+ λ(wi−1)Pcontinuation(wi)

State-of-the-art for n-gram models (Chen & Goodman, 1999)

34CSE 447/517 26wi - NLP

Continuation probability: “Francisco” vs “the”
"Francisco"

Raw count: 500
Appears frequently!

But only after:

San ___

Contexts: 1
Bad backoff candidate!

vs

"the"

Raw count: 500
Also appears frequently!

Appears after:
in ___ at ___ to ___ on ___ ...

Contexts: 847
Great backoff candidate!

Kneser-Ney insight: Context diversity matters more than raw
frequency for backoff

35CSE 447/517 26wi - NLP

The sparsity problem motivates combining multiple
models

Higher-order n-grams capture more context but suffer from sparsity
Trigram “flew to Seattle” may have count 0, even if bigram “to Seattle”
is common
Key insight: Lower-order models provide reliable fallback estimates
Solution: Combine models of different orders via interpolation

36CSE 447/517 26wi - NLP

Linear interpolation combines n-gram models with
learned weights

Interpolated probability is a weighted sum:

Pinterp(wn|wn−2, wn−1) = λ1P1(wn) + λ2P2(wn|wn−1) + λ3P3(wn|wn−2, wn−

Weights must sum to 1: ∑i λi = 1

Each controls how much we trust each modelλi

37CSE 447/517 26wi - NLP

Visualizing interpolation: Blending three models
Query: P(Seattle | flew, to) = ?

Unigram
P(Seattle)

= 0.001
×λ₁ +

Bigram
P(Seattle|to)

= 0.02
×λ₂ +

Trigram
P(Seattle|flew,to)

= 0.15
×λ₃

Example weights:
λ₁=0.1, λ₂=0.3, λ₃=0.6

Result:
P = 0.0961

0.1(0.001) + 0.3(0.02) + 0.6(0.15) = 0.0001 + 0.006 + 0.09 = 0.0961

38CSE 447/517 26wi - NLP

Why interpolation works: Robustness through
diversity

Trigram alone
✗ Sparse: many zero
counts
✗ Unreliable for rare
contexts
✓ Rich context when
available

Unigram alone
✓ Dense: no zero
counts
✓ Always has an
estimate
✗ Ignores all context

Interpolated
✓ Uses context when
available
✓ Falls back gracefully
✓ Never gives zero
probability

39CSE 447/517 26wi - NLP

Learning the interpolation weights
Weights are hyperparameters that must be tunedλi

Use a held-out development set (separate from training and test)
Optimize weights to maximize likelihood on held-out data:

λ̂ = arg max
λ
∏

w∈dev

Pinterp(w|context)

Expectation-Maximization (EM) algorithm finds optimal iterativelyλ

40CSE 447/517 26wi - NLP

Interpolation vs. Backoff: Two strategies for
combining models
Approach Strategy When to use lower-order
Interpolation Always mix

all orders
Every prediction

Backoff Use highest
order
available

Only when higher-order count = 0

If λ₁ = 0.1, λ₂ = 0.3, λ₃ = 0.6, and you encounter a context never seen in training, which model
contributes most to the prediction? What if the trigram has a reliable estimate?

Interpolation: P = λ1P1 + λ2P2 + λ3P3

Backoff: Use if count > 0, else , else P3 P2 P1

Kneser-Ney uses a sophisticated form of backoff with discounting

Concept Check

41CSE 447/517 26wi - NLP

Adjusted count matrices reveal smoothing’s effect
on probabilities

Raw Counts C
the cat sat dog

the 0 42 3 18
cat 1 0 25 0
sat 5 0 0 0
dog 0 0 12 0

9 zeros → P=0

Smoothed C* (+1)
the cat sat dog

the 1 43 4 19
cat 2 1 26 1
sat 6 1 1 1
dog 1 1 13 1

No zeros → all P>0

Difference C*−C
the cat sat dog

the +1 +1 +1 +1
cat +1 +1 +1 +1
sat +1 +1 +1 +1
dog +1 +1 +1 +1

Uniform +1 (Laplace)

42CSE 447/517 26wi - NLP

Visualization helps diagnose smoothing behavior
MLE P(w|the)

the cat sat dog

0 .67 .05 .29

P("the the") = 0 → impossible!

+1 Smoothed P(w|the)
the cat sat dog

.01 .64 .06 .28

All events now possible

.67 → .64
frequent loses 3%

0 → .01
zero gains mass

Σ = 1.0
still a valid distribution

43CSE 447/517 26wi - NLP

Part 3: Scaling to Large
Corpora

44CSE 447/517 26wi - NLP

Explicit n-gram tables become infeasible at scale
Memory grows as for n-gram tablesO(|V |n)

A trigram model with 100K vocabulary: possible entries1015

Specialized data structures are essential

45CSE 447/517 26wi - NLP

Tries share common prefixes to reduce memory
Nodes represent shared prefixes
Lookup for n-gram is w1, … , wn O(n)

Example: “the cat sat” and “the cat ran” share “the cat” branch

46CSE 447/517 26wi - NLP

Trie structure: Shared prefixes reduce storage
root

the
C=500

a
C=300

cat
C=120

dog
C=80

cat
C=90

dog
C=60

sat
C=45

ran
C=35

slept
C=25

ran
C=40

barked
C=30

Unigrams Bigrams Trigrams

"the cat sat" and "the cat ran" share nodes for "the" and "the → cat"

47CSE 447/517 26wi - NLP

Hash tables offer O(1) lookup but different tradeoffs
Map n-grams directly to counts: (‘the’, ‘cat’) → 42

 average lookup timeO(1)

Memory depends on collision handling and load factor

48CSE 447/517 26wi - NLP

Structure choice depends on access patterns and
constraints
Structure Memory Lookup Best For
Trie High (prefix

sharing)
Prefix queries,
smoothing

Hash
Table

Depends on load
avg

Flat access, fixed n

O(n)

O(1)

49CSE 447/517 26wi - NLP

Visual comparison: Trie vs Hash Table
Trie (Prefix Tree)

root

the a

cat dog

Prefix sharing saves memory

Prefix queries
Smoothing support

Hash Table

h("the cat") → 42
h("the dog") → 28
h("a cat") → 15
h("a dog") → 12

Flat structure: O(1) direct lookup

Fast lookup
Simple implementation

When would you prefer a trie over a hash table for n-gram storage? When would hash tables be
better?

Concept Check

50CSE 447/517 26wi - NLP

Infini-gram models remove the fixed-n constraint
entirely

Traditional models fix and vocabulary n V

Infini-gram: context length can be arbitrarily largek

Vocabulary grows dynamically with the data stream

51CSE 447/517 26wi - NLP

Streaming algorithms enable trillion-token scale
Online updates: as each token arrives, update all relevant statisticswt

Approximate counting (e.g., count-min sketch) bounds memory
Adaptive pruning removes rare contexts

52CSE 447/517 26wi - NLP

Infini-gram captures variable-length dependencies
Better fit for phenomena with variable context needs
Code, dialogue, and poetry benefit from flexible context
Empirical results show gains on rare events and long-context
prediction

53CSE 447/517 26wi - NLP

Part 4: Applications

54CSE 447/517 26wi - NLP

Speech recognition combines acoustic and language
model scores

Decoder searches for most probable word sequence
N-gram model provides for candidate wordsP(wn ∣ wn−1, …)

Acoustic model provides P(audio ∣ words)

55CSE 447/517 26wi - NLP

Speech decoder: Language model guides acoustic
search

audio
Audio Input

→

Acoustic Model
P(audio | "wreck")
P(audio | "recognize")
P(audio | "speech")

+

Language Model (N-gram)
P("wreck a nice" | ctx) = low
P("recognize speech" | ctx) = high

→

Decoder
Combined

scoring
→

"recognize
speech"

Output

Key insight: "Wreck a nice beach" sounds like "recognize speech" —
the LM breaks the tie!

56CSE 447/517 26wi - NLP

Smartphone keyboards use n-grams for next-word
prediction

Your phone suggests “you” after “thank.” Why might it not suggest “quantum”? What does this
reveal about n-gram predictions?

Fast computation: lookup, not neural inference
Suggest top-k words by P(w ∣ context)

Enables low-latency, battery-efficient prediction

Concept Check

57CSE 447/517 26wi - NLP

N-gram models score translation fluency in
statistical MT

For target sentence :y = (y1, … , yT)

P(y) =
T

∏

t=1

P(yt ∣ yt−n+1, … , yt−1)

Higher probability = more fluent target language
Combined with alignment model for full translation score

58CSE 447/517 26wi - NLP

SMT systems balance fidelity and fluency
Joint scoring:

Score = λ1 log Palign(y ∣ x) + λ2 log PLM(y)

: how well does translation match source?Palign

: how fluent is the target sentence?PLM

59CSE 447/517 26wi - NLP

SMT scoring: Balancing fidelity and fluency
Source (German): "Das Buch ist auf dem Tisch"

Candidate A: "The book
is on the table"

Palign

0.85
PLM

0.92
Score

-2.1

Candidate B: "Book the
is table on the"

Palign

0.90
PLM

0.001
Score

-8.7

Palign: Words match source? PLM: Sounds like English?

60CSE 447/517 26wi - NLP

N-gram locality limits global coherence in
translation

Markov assumption restricts context to tokensn − 1

Subject-verb agreement across clauses may not be enforced
Neural models (Transformers) capture longer dependencies

61CSE 447/517 26wi - NLP

AAC systems can be personalized with user-specific
n-gram models

Train on user’s own text to capture idiolect and preferences
Support non-standard language: code-switching, creative expression
Personalization enables authentic self-expression

62CSE 447/517 26wi - NLP

Data sparsity is severe for personalized, non-
standard models

User-specific corpora are small
Non-standard forms may never appear in training
Smoothing and vocabulary updates are essential

63CSE 447/517 26wi - NLP

Part 5: Evaluation and
Limitations

64CSE 447/517 26wi - NLP

Perplexity measures a model’s average uncertainty
per word

For sequence :w1, … , wN

Perplexity(M) = 2− 1
N
∑

N
i=1 log2 PM (wi∣w1:i−1)

Lower perplexity = higher average probability = better model
Equivalent to the geometric mean of inverse probabilities

65CSE 447/517 26wi - NLP

Perplexity intuition: “Effective vocabulary size”
Perplexity = 100

word1 word2 word3 ... word100

Model equally unsure among 100
choices

vs
Perplexity = 10
the a to ... word10

Model narrows to ~10 likely choices

Key insight: Perplexity = "branching factor" = average number of
equally likely next words

66CSE 447/517 26wi - NLP

Deriving perplexity: From probability to uncertainty
Start with the probability of the test set :W = w1, w2, … , wN

P(W) = P(w1, w2, … , wN) =
N

∏

i=1

P(wi ∣ w1, … , wi−1)

Problem: This number gets astronomically small!
Solution: Work in log space and normalize by length

67CSE 447/517 26wi - NLP

From log probability to cross-entropy
Log probability of the test set:

log P(W) =
N

∑

i=1

log P(wi ∣ w1:i−1)

Per-word log probability (normalized):

1

N

N

∑

i=1

log P(wi ∣ w1:i−1)

68CSE 447/517 26wi - NLP

Cross-entropy formula
Cross-entropy (using log base 2):H

H(W) = −
1

N

N

∑

i=1

log2 P(wi ∣ w1:i−1)

69CSE 447/517 26wi - NLP

From cross-entropy to perplexity
Perplexity is 2 raised to the cross-entropy:

PP(W) = 2H(W) = 2− 1
N
∑

N
i=1 log2 P(wi∣w1:i−1)

Equivalently, the inverse geometric mean of probabilities:

PP(W) = N

N

∏

i=1

1

P(wi ∣ w1:i−1)





⎷

Why perplexity instead of cross-entropy?
More interpretable: “effective branching factor”
A perplexity of 100 = choosing uniformly among 100 options

70CSE 447/517 26wi - NLP

Perplexity as branching factor: A visual metaphor
Predicting each word = choosing a branch

71CSE 447/517 26wi - NLP

Intrinsic vs. Extrinsic evaluation
Intrinsic Evaluation

What: Evaluate the model itself
Metric:Perplexity on held-out data
Pros: Fast, task-independent,

reproducible
Cons: May not correlate with task;

sensitive to vocab

Extrinsic Evaluation
What: Evaluate on downstream task
Metric:Task accuracy (WER, BLEU,

etc.)
Pros: Measures what we care about;

actionable
Cons: Expensive; confounds LM with

other factors

Best practice: Use intrinsic for rapid development; validate with extrinsic before
deployment

72CSE 447/517 26wi - NLP

The perplexity-task performance gap

When perplexity correlates well

- Similar domain (train ≈ test)
- Same vocabulary
- Task relies heavily on fluency

When it may not correlate

- Domain mismatch
- Task needs specific knowledge
- Other system components dominate

Lower perplexity usually helps, but not always!

Rule of thumb: A 10-20% perplexity reduction often yields
measurable task gains
Always validate with extrinsic evaluation before deployment!

73CSE 447/517 26wi - NLP

OOV words can cause perplexity to explode to
infinity

If , perplexity is undefined (infinite)PM (wi) = 0

Smoothing prevents this by ensuring all words have nonzero
probability
Fair comparison requires identical vocabulary and OOV handling

74CSE 447/517 26wi - NLP

Perplexity benchmarks reveal model quality
differences

Model Penn Treebank Perplexity
Trigram ~140
LSTM ~80
Transformer ~20

A model has perplexity 50 on news text but perplexity 200 on social media. What might explain this?
Is the model “bad”?

Lower is better, but domain and vocabulary must match
Perplexity doesn’t capture all aspects of quality

Concept Check

75CSE 447/517 26wi - NLP

Context windows fundamentally limit what n-grams
can capture

Trigrams see only 2 words of history
Even Transformers have finite context windows (512, 2048, …)
Long-range dependencies (agreement, coreference) may be missed

76CSE 447/517 26wi - NLP

Training data biases propagate into model
predictions

Underrepresented dialects (e.g. regional varieties) get worse
predictions
Models amplify demographic, topical, and stylistic imbalances
More data doesn’t automatically fix bias—diversity matters

77CSE 447/517 26wi - NLP

Language models can perpetuate and amplify
societal biases

Web-scale data encodes human biases
Underrepresentation leads to systematic errors for marginalized groups
Fairness means comparable performance across language varieties

78CSE 447/517 26wi - NLP

Mitigation requires explicit attention to fairness
Data augmentation with diverse language varieties
Dialect-sensitive evaluation benchmarks
Model interpretability to understand failure modes
Algorithmic transparency for deployment decisions

79CSE 447/517 26wi - NLP

Summary: N-gram models remain foundational
despite limitations

Core idea: Predict next word from fixed context window
Estimation: MLE + smoothing to handle unseen events
Scaling: Tries, hashing, streaming for large corpora
Applications: Speech, translation, AAC, text prediction
Evaluation: Perplexity, but watch for bias and fairness gaps

80CSE 447/517 26wi - NLP

