N-gram Language Models

Rob Minneker
2026-01-20

CSE 447/517 26wi - NLP

Sources
Content derived from: J&M Ch. 3

CSE 447/517 26wi - NLP

Part 0: The Language
Modeling Problem

What is a language model?

e A language model assigns probabilities to sequences of words

e For any sequence wi, wa, ..., wy,, we want to compute:

P(wl,wg,...,wn)

e This defines a probability distribution over language

e Higher probability = more “likely” or “natural” sequence

CSE 447/517 26wi - NLP

The language modeling task

Given a sequence of words...

[The][students][opened][their]

...predict the next word (or assign probability to possible
continuations)

minds
P=0.15

books
P=0.35

refrigerator
P = 0.0001

laptops
P=0.22

CSE 447/517 26wi - NLP

Why model probability distributions over language?

e Speech recognition: Which word sequence best matches the audio?
= “recognize speech” vs “wreck a nice beach”

e Machine translation: Which translation sounds most natural?

e Text generation: Sample from the distribution to produce text

e Spelling/grammar correction: Find the most probable intended
sequence

e Information retrieval: Score document relevance

CSE 447/517 26wi - NLP

The fundamental challenge: Language is infinite

e Vocabulary V has |V| words (e.g., 50,000)
e Possible bigrams: |[V|?2 = 2.5 x 10"

e Possible 10-word sentences: V[0 ~ 10%7

Number of atoms in the observable universe:

~108°

 We can never observe all possible sentences

* Yet we must assign probabilities to every possible sequence

CSE 447/517 26wi - NLP

The solution: Decompose using the chain rule

* Joint probability of a sequence can be decomposed:

P(wy,wa, ..., wy) P(w; | wy,...,w;i_1)

n
1=1

e Example: P(the cat sat) = P(the) x P(cat | the) x P(sat | the cat)
e But: Each conditional still depends on unbounded history!

e Key insight: Approximate by limiting history (Markov assumption)

CSE 447/517 26wi - NLP

Part 1: Foundations of N-
gram Language Models

N-gram models predict words using only the
previous N-1 words as context

e An N-gram model estimates P(wy, | Wp—(N-1);- -+, Wn—1)

e The conditional probability captures how likely the next word is given
recent context

e This formulation embodies a key simplifying assumption about
language

CSE 447/517 26wi - NLP

10

Trigrams condition on two preceding words to
predict the next

e Example: P(‘processing’ | ‘natural’, ‘language’)
e The model assumes: recent context is sufficient for prediction

e This enables efficient, statistical prediction for speech recognition, text
generation, and spelling correction

CSE 447/517 26wi - NLP

11

The chain rule decomposes sentence probability into
conditional factors

e Joint probability of a sentence w = wy, ws, ..., wr:

IIEH

wn ’ Wy, — (N—1)s - 7wn—1)

e Each factor depends only on a fixed-size context window

e This approximation makes computation tractable

CSE 447/517 26wi - NLP

12

Chain rule in action: Bigram factorization

P("the cat sat") =

second -» third

P(sat | cat)

first - second

P(cat | the)

start -» first word

P(the | (s)) |*

X

end marker

P({(/s) | sat)

Each factor uses only one word of context (bigram
assumption)

CSE 447/517 26wi - NLP

X

13

Different values of N trade off context richness
against data sparsity

e Unigrams (N = 1): P(w,) — no context at all
e Bigrams (N = 2): P(w, | w,_1) — one word of context

e Trigrams (N = 3): P(w, | w,_2,w,_1) — two words of context

CSE 447/517 26wi - NLP

14

Visualizing context windows: What each model
€€ »
sees

Sentence: The cat sat on the mat

Unigram: The cat sat on the P(mat)
Bigram: The cat sat on P(mat | the)

Trigram: The cat sat m P(mat | on, the)

Q) Concept Check

If you have a vocabulary of 10,000 words, how many possible bigrams exist? How many trigrams?
What does this imply for data requirements?

CSE 447/517 26wi - NLP 15

Standard notation enables reproducible model
specification

e V:vocabulary set; |V| is vocabulary size
e (s), (/s): special tokens for sentence boundaries

e Proper notation clarifies assumptions and enables fair comparison

CSE 447/517 26wi - NLP

16

The Markov assumption limits dependence to the k
most recent words

e Order-k Markov assumption:

P(wy, | wi,y...,wy1) = P(w, | Wp—k, ..., Wn_1)

e This reduces unbounded context to a fixed-length window of size k

 The model “forgets” everything before the window

CSE 447/517 26wi - NLP

17

The Markov window “forgets” everything outside its
scope

Sentence: The quick brown fox jumps over the lazy [ELL)
k=1: The guick broewn Ffox Jumps over %he P(dog | lazy)

k=2: %Gqﬂiekb%evfﬁ#e*j—umpseﬁlladog | the,

c=d: The quick brown fox [P PR ERME o il
lazy)

Erossed—oeut = forgotten by the model (Markov
"memoryless" property)

CSE 447/517 26wi - NLP 18

Independence assumptions make parameter
estimation feasible

e For trigrams: P(wy | w1, ws, ws3) ~ P(wy | we,ws)

e Parameters grow polynomially with k, not exponentially with sequence
length

* Finite corpora can reliably estimate a tractable number of parameters

CSE 447/517 26wi - NLP

19

Markov models cannot capture long-range linguistic
dependencies

e Subject-verb agreement across clauses requires longer context

e Anaphora resolution (pronoun references) often spans many words

e These limitations motivate RNNs and Transformers

CSE 447/517 26wi - NLP

20

Long-range dependencies: What trigrams miss

"The keys to the cabinet in the corner of the room are on the table."

- ~
~~~~~
- ~
-
- Ss
e ~

N
keys (plural) are (plural)

Trigram window: sees only "room are" — no access to "keys"

CSE 447/517 26wi - NLP

21



Markov pioneered statistical text analysis in 1913

e A. A. Markov demonstrated word sequences exhibit capturable
dependencies

e Modeled transitions: P(w, | w,_1)

e Introduced the “memoryless” property: future depends only on recent
past

CSE 447/517 26wi - NLP

22



Chomsky’s formal grammars revealed hierarchical
language structure

e 1956: Proposed finite-state, context-free, and context-sensitive
grammars

 Emphasized recursive and hierarchical structure beyond word
transitions

* N-grams capture local patterns but miss deeper syntactic structure

CSE 447/517 26wi - NLP 3



Modern N-gram models combine statistical
dependence with practical utility

° : t
e Evolution from raw frequencies: P(w) = Cou?v(w)
e To conditional models: P(w,, | w,_1,... 7wn—(n—1))

e Foundation for text generation, speech recognition, and machine
translation

CSE 447/517 26wi - NLP

24



Part 2: Estimation and
Smoothing

CSE 447/517 26wi - NLP



MLE estimates probabilities by counting n-gram
occurrences

e Maximum Likelihood Estimate for N-grams:

C(w]_... w_lw)
PMLE(wnI’wn_l,.,,,fwl): ) y Wn—-1y Wn

C’(wl, “ o ,'wn_l)

e Simply divide n-gram count by context count

e Intuitive and unbiased on large corpora

CSE 447/517 26wi - NLP

26



MLE in action: Counting bigrams in a corpus

"I want to eat. I want to sleep. I need to go."

Bigram Counts MLE Probabilities

JUEE e P(want | I) = %/3 = 0.67
tto 2

e e P(need | I) = /3 = 0.33

to eat 1 — ;

o sleep 1 P(to | want) = 4/, = 1.00

to go 1

| need 1

needto 1

CSE 447/517 26wi - NLP -



MLE assigns zero probability to unseen n-grams

e If C(unseen bigram) = 0, then Pyg = 0

e Zero probability means: “impossible according to the model”

e But unseen doesn’t mean impossible—just unobserved

() Concept Check

If your training corpus never contains “quantum computing,” what probability will an MLE bigram
model assign to “quantum computing” in test data? What’s wrong with this?

CSE 447/517 26wi - NLP

28



Smoothing redistributes probability mass from seen
to unseen events

e Core insight: “steal” small amounts from frequent n-grams
e Give that mass to rare and unseen n-grams

e Result: no probability is exactly zero

CSE 447/517 26wi - NLP

29



Visualizing probability redistribution
MLE

the

of

cat

sat

0.45 0.15 0.10 0.05

mat unseen

CSE 447/517 26wi - NLP

0.40 0.13 0.09 0.05 |0.11

the

of

Smoothed

cat

sat

mat unseen

30



Laplace smoothing adds a constant to all counts

e Add a > 0 to each count:

Clw;_1,w;) +
C(w;_1) + a|V|

PLaplace (wz "wi—l ) —

e Simple but can over-smooth for large vocabularies

e Often a = 1 (add-one smoothing)

CSE 447/517 26wi - NLP

31



Good-Turing uses frequency of frequencies to
estimate unseen mass

e Key insight: count how many n-grams appear exactly r times

e Adjusted count formula:

e N,: number of n-grams with count r

e Uses rare events to estimate probability of unseen events

CSE 447/517 26wi - NLP

32



Good-Turing intuition: Rare events predict unseen

events

Frequency of Frequencies
(Ny)

3,24141,024] 512 m

N+ No N3

N, = count of n-grams appearing r
times

—

Use N4 to
estimate Ng

CSE 447/517 26wi -

Key Insight

Unseen (r=0): How much
probability mass?

Singletons (r=1): 1,024 n-
grams seen exactly once

Intuition: N-grams seen
once were recently "unseen”
— they tell us about the
unseen mass

NLP

33



Kneser-Ney smoothing considers context diversity,
not just frequency

e A word that appears in many contexts is a better backoft candidate

e Formula incorporates discount D and continuation probability:

max(C(w;—1,w;) — D,0
( ( 1 ) ) — )\(wz’_l)PcontinuatiOIl(wi)
C(w;-1)

Pxn(w;|lw;_1) =

e State-of-the-art for n-gram models (Chen & Goodman, 1999)

CSE 447/517 26wi - NLP 34



Continuation probability: “Francisco” vs “the”

"Francisco" "the"
Raw count: 500 Raw count: 500
Appears frequently! Also appears frequently!
But only after: VS Appears after:
San__ in___ at__ to__ on___
Contexts: 1 Contexts: 847
Bad backoff candidate! Great backoff candidate!

Kneser-Ney insight: Context diversity matters more than raw
frequency for backoft

CSE 447/517 26wi - NLP -



The sparsity problem motivates combining multiple
models
e Higher-order n-grams capture more context but suffer from sparsity

e Trigram “flew to Seattle” may have count 0, even if bigram “to Seattle”
1S common

e Key insight: Lower-order models provide reliable fallback estimates

e Solution: Combine models of different orders via interpolation

CSE 447/517 26wi - NLP -



Linear interpolation combines n-gram models with
learned weights

* Interpolated probability is a weighted sum:

Pinterp(wn|wn—27 wn—l) — )\lpl(wn) + )\2P2(wn’wn—1) + )\3P3('wn’wn—27 W, —

e Weights must sumto 1: Y . \; =1

e Each \; controls how much we trust each model

CSE 447/517 26wi - NLP 37



Visualizing interpolation: Blending three models
Query: P(Seattle | flew, to) = ?

Unigram | | Bigram ‘ r Trigram
P(Seattle) x)\1 4+ | P(Seattlelto) x)\2 + | P(Seattlelflew,to) x)\s
= 0.001 = 0.02 =0.15
Example weights: Result:

A=0.1, A2=0.3, A3=0.6 |P = 0.0961

0.1(0.001) + 0.3(0.02) + 0.6(0.15) = 0.0001 + 0.006 + 0.09 = 0.0961

CSE 447/517 26wi - NLP -



Why interpolation works: Robustness through

diversity

Trigram alone

X Sparse: many zero
counts

X Unreliable for rare
contexts

v Rich context when
available

Unigram alone

v Dense: no zero
counts

v Always has an
estimate

X Ignores all context

Interpolated

v Uses context when
available

v Falls back gracefully

v Never gives zero
probability

CSE 447/517 26wi - NLP

39



Learning the interpolation weights

e Weights \; are hyperparameters that must be tuned

e Use a held-out development set (separate from training and test)

e Optimize weights to maximize likelihood on held-out data:

= arg mftx H Pipterp(w|context)

wEdev

e Expectation-Maximization (EM) algorithm finds optimal A iteratively

CSE 447/517 26wi - NLP

40



Interpolation vs. Backoff: Two strategies for
combining models

Approach Strategy When to use lower-order
Interpolation Always mix Every prediction
all orders
Backoft Use highest Only when higher-order count = 0
order
available

e Interpolation: P = A1 P; + Ao Py + A3Ps
e Backoft: Use Pj if count > O, else Ps, else P;

e Kneser-Ney uses a sophisticated form of backoft with discounting

Q) Concept Check

If A = 0.1, A2 = 0.3, As = 0.6, and you encounter a context never seen in training, which model
contributes most to the prediction? What-tftht/ trigratiihd¥4 reliable estimate? 41




Adjusted count matrices reveal smoothing’s effect
on probabilities

Raw Counts C Smoothed C* (+1) Difference C*-C

the cat sat dog - the cat sat dog > the cat sat dog

e o 1 > K0 . i W o | e # +1 w1

cat10-0 cat211 cat +1 +1  +1  +1

sat 5 sat. 6 1 1 1 sat +1 +1 +1  +1
dog 0 O - 0 dog 1 1 1 dog +1 +1 +1  +1
9 zeros = P=0 No zeros — all P>0 Uniform +1 (Laplace)

CSE 447/517 26wi - NLP 45



Visualization helps diagnose smoothing behavior

MLE P(withe) . Smoothed P(wlthe)
the cat sat dog the cat sat dog
0 .05 .01 gz .06 pwas
P("the the") = 0 — impossible! All events now possible
.67 = .64 0 - .01 2=1.0
frequent loses 3% zero gains mass still a valid distribution

CSE 447/517 26wi - NLP

43



Part 3: Scaling to Large
Corpora

CSE 447/517 26wi - NLP



Explicit n-gram tables become infeasible at scale

e Memory grows as O(|V|") for n-gram tables
e A trigram model with 100K vocabulary: 10'® possible entries

e Specialized data structures are essential

CSE 447/517 26wi - NLP

45



Tries share common prefixes to reduce memory

e Nodes represent shared prefixes
e Lookup for n-gram wy,...,w, is O(n)

e Example: “the cat sat” and “the cat ran” share “the cat” branch

CSE 447/517 26wi - NLP

46



Trie structure: Shared prefixes reduce storage

"the cat sat" and "the cat ran" share nodes for "the" and "the — cat"

CSE 447/517 26wi - NLP

47



Hash tables offer O(1) lookup but different tradeoffs

e Map n-grams directly to counts: (‘the’,‘cat’) — 42
e O(1) average lookup time

e Memory depends on collision handling and load factor

CSE 447/517 26wi - NLP

48



Structure choice depends on access patterns and
constraints

Structure Memory Lookup Best For

Trie High (prefix O(n) Prefix queries,
sharing) smoothing

Hash Depends on load O(1) Flat access, fixed n

Table avg

CSE 447/517 26wi - NLP

49



Visual comparison: Trie vs Hash Table

better?

Trie (Prefix Tree)

(@) (=)

Prefix sharing saves memory

Prefix queries
Smoothing support

Q) Concept Check

Hash Table

h("the cat") — 42
h("the dog") — 28
h("a cat") — 15
h("a dog") — 12

Flat structure: O(1) direct lookup

Fast lookup
Simple implementation

When would you prefer a trie over a hash table for n-gram storage? When would hash tables be

CSE 447/517 26wi - NLP

50



Infini-gram models remove the fixed-n constraint
entirely

e Traditional models fix n and vocabulary V'
e Infini-gram: context length k can be arbitrarily large

e Vocabulary grows dynamically with the data stream

CSE 447/517 26wi - NLP

51



Streaming algorithms enable trillion-token scale

* Online updates: as each token wy arrives, update all relevant statistics

e Approximate counting (e.g., count-min sketch) bounds memory

e Adaptive pruning removes rare contexts

CSE 447/517 26wi - NLP

52



Infini-gram captures variable-length dependencies

e Better fit for phenomena with variable context needs
e Code, dialogue, and poetry benefit from flexible context

e Empirical results show gains on rare events and long-context
prediction

CSE 447/517 26wi - NLP

53



Part 4: Applications

CSE 447/517 26wi - NLP



Speech recognition combines acoustic and language
model scores

e Decoder searches for most probable word sequence

e N-gram model provides P(w,, | w,_1,...) for candidate words

e Acoustic model provides P(audio | words)

CSE 447/517 26wi - NLP

55



Speech decoder: Language model guides acoustic

search

\ &

audio
Audio Input

J

7

.

P("wreck a nice" | ctx) = low

~N

Language Model (N-gram)

P("recognize speech" | ctx) = high

r

J

.

Acoustic Model

P(audio | "wreck")

P(audio | "recognize")
P(audio | "speech")

~

Ve

\.

Decoder

Combined
scoring

\

r

.

"recognize
speech”
Output

N\

J

the LM breaks the tie!

Key insight: "Wreck a nice beach" sounds like "recognize speech" —

CSE 447/517 26wi - NLP

56



Smartphone keyboards use n-grams for next-word
prediction

e Fast computation: lookup, not neural inference

e Suggest top-k words by P(w | context)

e Enables low-latency, battery-efficient prediction

() Concept Check

Your phone suggests “you” after “thank.” Why might it not suggest “quantum”? What does this
reveal about n-gram predictions?

CSE 447/517 26wi - NLP

57



N-gram models score translation fluency in
statistical MT

e For target sentence y = (y1, .- ., Y7):

T

P(y) = | [ P(ye | 9e-ni1s- s we 1)
t=1

e Higher probability = more fluent target language

e Combined with alignment model for full translation score

CSE 447/517 26wi - NLP

58



SMT systems balance fidelity and fluency

* Joint scoring:

Score = A 1og Pyjign (v | ) + A2 log P (y)

* Pi,iien: how well does translation match source?

e Py how fluent is the target sentence?

CSE 447/517 26wi - NLP

59



SMT scoring: Balancing fidelity and fluency

Source (German): "Das Buch ist auf dem Tisch"

Candidate A: "The book Palign Pl Score
is on the table" 0.85 0.92 -2.1
Candidate B: "Book the Palign Pl Score
is table on the" 0.90 0.001 -8.7

Palign: Words match source? PrLm: Sounds like English?

CSE 447/517 26wi - NLP 50



N-gram locality limits global coherence in
translation

e Markov assumption restricts context to n — 1 tokens

e Subject-verb agreement across clauses may not be enforced

e Neural models (Transformers) capture longer dependencies

CSE 447/517 26wi - NLP

61



AAC systems can be personalized with user-specific
n-gram models

e Train on user’s own text to capture idiolect and preferences

e Support non-standard language: code-switching, creative expression

e Personalization enables authentic self-expression

CSE 447/517 26wi - NLP

62



Data sparsity is severe for personalized, non-
standard models

e User-specific corpora are small
e Non-standard forms may never appear in training

e Smoothing and vocabulary updates are essential

CSE 447/517 26wi - NLP

63



Part 5: Evaluation and
Limitations

CSE 447/517 26wi - NLP



Perplexity measures a model’s average uncertainty
per word

e For sequence wi,...,wWnN:

Perplexity (M) = 9~ Lic1 logy Par(wilwii-1)

e Lower perplexity = higher average probability = better model

e Equivalent to the geometric mean of inverse probabilities

CSE 447/517 26wi - NLP

65



Perplexity intuition: “Effective vocabulary size”
Perplexity = 100 Perplexity = 10

wordl word2 word3 ... word100
the a to ... wordlO

Model equally unsure among 100

: Model narrows to ~10 likely choices
choices

Key insight: Perplexity = "branching factor" = average number of
equally likely next words

CSE 447/517 26wi - NLP -



Deriving perplexity: From probability to uncertainty

e Start with the probability of the test set W = wy, wa, ..., wn:
N

P(W) = P(wi,ws, ..., wyN) = HP(wi Wi, wi1)
i=1

e Problem: This number gets astronomically small!

e Solution: Work in log space and normalize by length

CSE 447/517 26wi - NLP

67



From log probability to cross-entropy

e Log probability of the test set:

N
log P(W) = Zlog P(w; | wi-1)
—1

]

e Per-word log probability (normalized):

1 N
N Z log P(’wz | ’wl;z‘_l)
1=1

CSE 447/517 26wi - NLP

68



Cross-entropy formula

e Cross-entropy H (using log base 2):

;N
H(W) = N Y logy P(w; | wii—1)
i—1

CSE 447/517 26wi - NLP

69



From cross-entropy to perplexity

e Perplexity is 2 raised to the cross-entropy:

1

PP(W) — 2H(W) — 97N i]\il logy P(w;|w1:-1)

1
P(’wz' | wl:i—l)

i,
o
3
|
=
==

e Why perplexity instead of cross-entropy?

= More interpretable: “effective branching factor”

= A perplexity of 100 = choosing uniformly among 100 options

CSE 447/517 26wi - NLP

70



Perplexity as branching factor: A visual metaphor

Predicting each word = choosing a branch

CSE 447/517 26wi - NLP

71



Intrinsic vs. Extrinsic evaluation

r

\,

Intrinsic Evaluation

What: Evaluate the model itself
Metric:Perplexity on held-out data

Pros: Fast, task-independent,
reproducible

Cons: May not correlate with task;

sensitive to vocab

) (

J .

Extrinsic Evaluation

What: Evaluate on downstream task

Metric:Task accuracy (WER, BLEU,
etc.)

Pros: Measures what we care about;
actionable

Cons: Expensive; confounds LM with
other factors

Best practice: Use intrinsic for rapid development; validate with extrinsic before

deployment

CSE 447/517 26wi - NLP

J

72



The perplexity-task performance gap

e Lower perplexity usually helps, but not always!

When perplexity correlates well When it may not correlate
- Similar domain (train = test) - Domain mismatch
- Same vocabulary - Task needs specific knowledge
- Task relies heavily on fluency - Other system components dominate

e Rule of thumb: A 10-20% perplexity reduction often yields
measurable task gains

e Always validate with extrinsic evaluation before deployment!

CSE 447/517 26wi - NLP

73



OOV words can cause perplexity to explode to
infinity
o If Py(w;) = 0, perplexity is undefined (infinite)

e Smoothing prevents this by ensuring all words have nonzero
probability

e Fair comparison requires identical vocabulary and OOV handling

CSE 447/517 26wi - NLP

74



Perplexity benchmarks reveal model quality
differences

Model Penn Treebank Perplexity
Trigram ~140
LSTM ~80

Transformer ~20

e Lower is better, but domain and vocabulary must match

e Perplexity doesn’t capture all aspects of quality

() Concept Check

A model has perplexity 50 on news text but perplexity 200 on social media. What might explain this?
Is the model “bad”?

CSE 447/517 26wi - NLP

75



Context windows fundamentally limit what n-grams
can capture

e Trigrams see only 2 words of history
e Even Transformers have finite context windows (512, 2048, ...)

e Long-range dependencies (agreement, coreference) may be missed

CSE 447/517 26wi - NLP

76



Training data biases propagate into model
predictions

e Underrepresented dialects (e.g. regional varieties) get worse
predictions

e Models amplify demographic, topical, and stylistic imbalances

e More data doesn’t automatically fix bias—diversity matters

CSE 447/517 26wi - NLP

77



Language models can perpetuate and amplify
societal biases

e Web-scale data encodes human biases

e Underrepresentation leads to systematic errors for marginalized groups

e Fairness means comparable performance across language varieties

CSE 447/517 26wi - NLP

78



Mitigation requires explicit attention to fairness

e Data augmentation with diverse language varieties
e Dialect-sensitive evaluation benchmarks
e Model interpretability to understand failure modes

e Algorithmic transparency for deployment decisions

CSE 447/517 26wi - NLP

79



Summary: N-gram models remain foundational
despite limitations

e Core idea: Predict next word from fixed context window

e Estimation: MLE + smoothing to handle unseen events

e Scaling: Tries, hashing, streaming for large corpora

o Applications: Speech, translation, AAC, text prediction

e Evaluation: Perplexity, but watch for bias and fairness gaps

CSE 447/517 26wi - NLP

80



