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Administrivia
Course website has some updates (for real)
A1 is released! Due the 29th, read it and plan ahead
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Sources
Content derived from: J&M Ch. 4
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Google Cloud Education Credits
Google has graciously given our course cloud credits!
$50 per student to use this quarter
Instructions on how to redeem on Ed
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (1/8)

where  = true positives,  = true negatives,  = false positives,
 = false negatives.

Evaluation metrics like accuracy, precision, recall, and F1-score
measure classifier performance.
Accuracy quantifies overall correctness:

Accuracy =
TP + TN

TP + FP + TN + FN

TP TN FP

FN
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Spam dataset: Is this a good model?
Suppose 1,000,000 emails: 999,000 ham (99.9%) and 1,000 spam
(0.1%).
A model predicts ham for every message.
Accuracy = 999,000 / 1,000,000 = 99.9%.
Is this a good model?
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (2/8)

Precision and recall are class-specific:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Precision: proportion of predicted positives that are correct.
Recall: proportion of actual positives that are retrieved.
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (3/8)

F1-score balances precision and recall:

F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall

Generalizes to  for weighting recall vs. precision.Fβ

 formula:

Note

Fβ

Fβ = (1 + β2) ⋅
Precision ⋅ Recall

(β2 ⋅ Precision) + Recall

8CSE 447/517 26wi - NLP



Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (4/8)

The confusion matrix summarizes true/false positives/negatives; F1
balances precision and recall.
The confusion matrix structure:

Predicted + Predicted −

Actual + TP FN

Actual − FP TN
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (5/8)
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (6/8)

Directly visualizes classifier errors and successes.
Precision-Recall tradeoff:

High precision, low recall: conservative classifier.
High recall, low precision: aggressive classifier.

-score is harmonic mean, punishing extreme imbalance
between precision and recall.
F1
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (7/8)

Choosing the right metric is crucial, especially for imbalanced data and
model comparison.
When would you tolerate more false positives to catch almost every
true case (prioritize recall)?
When would you tolerate more misses to avoid false alarms (prioritize
precision)?
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Evaluation metrics like accuracy, precision, recall,
and F1-score measure classifier performance. (8/8)

Accuracy can be misleading for imbalanced classes (e.g., rare disease
detection).

Example: 99% accuracy if classifier always predicts majority class.
For skewed data, prefer precision, recall, or  tailored to
application risk.

Fβ

E.g., spam detection: high recall, moderate precision.
Cross-validation strategies (e.g., stratified -fold) provide robust
estimates and control for class imbalance during evaluation.

k
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Picking : example scenariosFβ

Choose  when recall matters more than precision (misses are
costly).

Fβ=2

Example: cancer screening triage; missing a true case is worse than
a false alarm.
Example: safety incident detection; you want to catch nearly all real
incidents.

Choose  when precision matters more than recall (false alarms
are costly).

Fβ=1/2

Example: automated legal holds; false positives are expensive to
review.
Example: account freeze alerts; avoid disrupting legitimate users.
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Part 2: Logistic Regression
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(1/4)

Discriminative models directly estimate conditional probability ,
emphasizing decision boundaries.

P(y|x)

The model focuses on learning the mapping from features  to
labels , rather than modeling  or .

x

y P(x) P(x, y)

Contrasts with generative models, which require explicit modeling
of the joint distribution  or the marginal .P(x, y) P(x)

Inductive bias is centered on maximizing separation between classes
in feature space.
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(2/4)

Logistic regression leverages feature vectors  and weight parameters
 to model  via the sigmoid activation.

x

w P(y = 1|x)

The model computes:

P(y = 1|x) = σ(w ⋅ x + b) =
1

1 + e−(w⋅x+b)
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Logistic regression computes a weighted sum (logit)
and applies a sigmoid.

𝑥 = [𝑥1,𝑥2,𝑥3]

𝑤 = [𝑤1,𝑤2,𝑤3]

𝑏

𝑧 = 𝑤⊤𝑥 + 𝑏 𝑦̂ = 𝜎(𝑧) 𝑃(𝑦 = 1 ∣ 𝑥) = 𝑦̂
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(3/4)

Training involves optimizing weights  and bias  to minimize the
cross-entropy loss:

w b

L(w, b) = −[y log ŷ + (1 − y) log(1 − ŷ)]

The decision boundary is the hyperplane , learned directly
from labeled data.

w ⋅ x + b = 0
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Logistic loss is the negative log-likelihood of a
Bernoulli model. (1/1)

Assume  with Bernoulli likelihood:y(i) ∈ {0, 1}

pθ(y
(i) ∣ x(i)) = ŷ(i)y(i)

(1 − ŷ(i))1−y(i)

, ŷ(i) = σ(w⊤x(i) + b)

MLE maximizes , equivalently minimizes negative log-
likelihood:

∏i pθ(y
(i) ∣ x(i))

−
N

∑

i=1

log pθ(y
(i) ∣ x(i)) = −

N

∑

i=1

[y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))]

This is exactly the binary cross-entropy (logistic) loss.
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Iris dataset: binary classification
Classic Iris measurements (sepal/petal lengths) with logistic regression
classifying setosa vs. versicolor using a 2D decision boundary.
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Discriminative models directly model P(y|x),
focusing on decision boundaries between classes.
(4/4)

Discriminative approaches enable robust text classification by allowing
targeted feature engineering and direct optimization for accuracy.

Feature engineering can encode linguistic, lexical, or syntactic cues
(e.g., word presence, n-grams, TF-IDF scores).
Empirical performance improves as features are tailored to the
structure and nuances of text data.
Example: In sentiment classification, features such as polarity
lexicon counts or phrase patterns can be incorporated to improve

 estimation.P(y|x)
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (1/7)

where  is the sigmoid activation.

Binary logistic regression models the probability of a binary outcome
using the sigmoid function.
For input , the model defines the probability of class 
as:

x ∈ R
d y ∈ {0, 1}

P(y = 1|x; w, b) = σ(w
⊤

x + b)

σ(z) = 1
1+e−z
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (2/7)

Applications:

Intuition: The sigmoid maps real-valued scores to , enabling
probabilistic interpretation for binary classification.

[0, 1]

Text sentiment classification (positive/negative)
Spam detection (spam/not spam)
Medical diagnosis (disease/no disease)
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (3/7)

where .

The model uses cross-entropy loss and optimizes parameters via
(stochastic) gradient descent.
The cross-entropy loss for a single data point is:

L(w, b) = −y log ŷ − (1 − y) log(1 − ŷ)

ŷ = σ(w
⊤

x + b)

For dataset , the total loss:{(x
(i), y(i))}N

i=1

J (w, b) =
1

N

N

∑

i=1

L(i)
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (4/7)
Gradient Descent Algorithm:

For each data point, compute the predicted probability  using the
sigmoid function.

ŷ

Calculate gradients:
∇w = (ŷ − y)x

∇b = (ŷ − y)

Update parameters:
w ← w − η∇w

b ← b − η∇b
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (5/7)
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (6/7)

Stochastic gradient descent (SGD) updates parameters using individual
samples, improving convergence on large datasets.
This enables effective classification and sets the stage for regularization
to prevent overfitting.
Logistic regression provides probabilistic outputs, interpretable
coefficients, and a convex loss surface, facilitating robust training.
Overfitting can occur, especially with high-dimensional data;
regularization (e.g., L1, L2 penalties) mitigates this by constraining
parameter magnitudes.
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Binary logistic regression models the probability of
a binary outcome using the sigmoid function. (7/7)
Next:

We will examine regularization strategies and their effect on
generalization in logistic regression.
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Regularization penalties prevent overfitting by
constraining parameter magnitudes. (1/3)

where  controls the regularization strength.

Regularization adds a penalty term to the loss function to discourage
large parameter values.

 norm: Lp ∥w∥p = (∑

d
j=1 |wj|p)

1/p

 regularization (Lasso): L1 ∥w∥1 = ∑

d
j=1 |wj|

 regularization (Ridge): L2 ∥w∥2
2 = ∑

d
j=1 w

2
j

Regularized loss:

Jreg(w, b) =
1

N

N

∑

i=1

L(i) + λ∥w∥p

λ
30CSE 447/517 26wi - NLP



Regularization penalties prevent overfitting by
constraining parameter magnitudes. (2/3)

L2 regularization derives from a Gaussian prior on weights:
Prior: p(w) ∝ exp (− λ

2 ∥w∥2
2)

MAP estimation adds the penalty  to the loss.λ∥w∥2
2

L1 regularization derives from a Laplace (double exponential) prior:
Prior: p(w) ∝ exp (−λ∥w∥1)

MAP estimation adds the penalty  to the loss.λ∥w∥1
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Regularization penalties prevent overfitting by
constraining parameter magnitudes. (3/3)

L1 regularization promotes sparsity by setting many weights to zero,
enabling feature selection.
L2 regularization shrinks weights uniformly, improving generalization
without feature selection.
Practical guidance:

Use L2 (Ridge) for dense feature spaces or when all features may be
informative.
Use L1 (Lasso) when feature selection is desired or the feature
space is sparse.
Elastic Net combines L1 and L2 for balanced regularization.
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Multiclass logistic regression can be done via one-
vs-rest or softmax approaches. (1/3)

Multiclass logistic regression can be performed using either one-vs-rest
or softmax approaches.

In the one-vs-rest (OvR) strategy,  binary classifiers are trained,
one per class, each distinguishing one class from all others.

K

For class , the classifier computes k P(y = k ∣ x) = σ(w
⊤
k x + bk)

The predicted class is .arg maxk P(y = k ∣ x)

The softmax approach generalizes logistic regression to multiple
classes by modeling all classes jointly.
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Multiclass logistic regression can be done via one-
vs-rest or softmax approaches. (2/3)

For  classes, the probability of class  is:K k

P(y = k ∣ x) =
exp(w

⊤
k x + bk)

∑

K
j=1 exp(w

⊤
j x + bj)

The predicted class is again .arg maxk P(y = k ∣ x)

Both approaches use the cross-entropy loss, but the softmax
formulation yields a single, vector-valued gradient, while OvR
involves  separate binary losses.K
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Multiclass logistic regression can be done via one-
vs-rest or softmax approaches. (3/3)
Applications:

Text classification with more than two categories (e.g., topic or
sentiment classification).
Part-of-speech tagging, where each word must be assigned to one of
many possible tags.
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Multiclass logistic regression: OvR vs. softmax
(diagram)

Softmax (shared norm.)

OvR (K=3 sigmoids)
𝑥 ∈ 𝑅3

𝑧𝑘 = 𝑤𝑘
⊤𝑥 + 𝑏𝑘,  𝑘 ∈ {1, 2, 3} 𝑝̂

𝑘
= 𝜎(𝑧𝑘) 𝑦̂ = arg⁡max⁡

𝑘
𝑝̂
𝑘

𝑧𝑘 = 𝑤𝑘
⊤𝑥 + 𝑏𝑘,  𝑘 ∈ {1, 2, 3} 𝑝̂

𝑘
=

𝑒𝑧𝑘

∑
𝑗 = 1

3
𝑒𝑧𝑗

𝑦̂ = arg⁡max⁡
𝑘
𝑝̂
𝑘

Takeaways:

OvR is simpler to train with binary solvers and allows per-class
thresholds.
Softmax provides a single, normalized probability distribution across
classes.
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Part 3: Statistical and
Experimental
Considerations
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Statistical significance testing is essential for
validating NLP experiment results. (1/8)

Example: Trained logistic regression on a toy spam/ham dataset.
We evaluate predictions with a confusion matrix before running
significance tests.
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Statistical significance testing is essential for
validating NLP experiment results. (2/8)

Statistical hypothesis testing quantifies whether observed performance
differences are likely due to chance.

Null hypothesis : No difference between systems’ true
performance.

H0

-value: Probability of observing results at least as extreme as those
measured, assuming  is true.
p

H0
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Statistical significance testing is essential for
validating NLP experiment results. (3/8)

In NLP, model evaluation metrics (e.g., accuracy, F1) are subject to
sampling noise.

Random train/test splits and annotation errors introduce variance.
Without significance testing, small metric improvements may be
spurious.

Example:
Comparing two classifiers with 80.2% vs. 80.7% accuracy on a test
set of size .N

Is the 0.5% difference meaningful, or within random variation?
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Statistical significance testing is essential for
validating NLP experiment results. (4/8)
Methods like bootstrap confidence intervals and tests across datasets
assess result reliability.

The bootstrap estimates confidence intervals by repeatedly resampling
the test set:

For b = 1, … ,B : Sample with replacement to create set Db

Compute metric: θ(b) = Metric(Db)

Form empirical distribution: {θ(1), … , θ(B)}
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Statistical significance testing is essential for
validating NLP experiment results. (6/8)

Significance testing across datasets (e.g., paired -test, approximate
randomization) accounts for correlation and variance:

t

Paired -test: Compare metric differences per example across
systems.

t

Randomization: Shuffle system outputs to simulate null hypothesis.
Application:

Dror et al. (2017) recommend testing across multiple datasets for
robustness.
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Statistical significance testing is essential for
validating NLP experiment results. (7/8)
Proper significance reporting ensures replicability and trust in
classification experiments.

Reporting standards include:
Declaring test set size, number of runs, and test statistic used.
Reporting confidence intervals, not just point estimates.
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Statistical significance testing is essential for
validating NLP experiment results. (8/8)

Replicability crisis in NLP highlights the necessity of statistical rigor.
Example reporting statement:

“System A outperforms System B on F1 ( , 95% CI: [0.02,
0.08]) across 10 datasets.”

p = 0.03
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Spam/ham: are point estimates enough?

Metric Mean
Accuracy 0.838333
Precision 0.996000
Recall 0.678105
F1 0.789740

Confusion matrix + point metrics on the tiny test set.
Are these point estimates enough to claim a meaningful result?
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Spam/ham: bootstrap confidence intervals

Metric Mean CI Low CI High
Accuracy 0.838333 0.583333 1.000000
Precision 0.996000 1.000000 1.000000
Recall 0.678105 0.250000 1.000000
F1 0.789740 0.400000 1.000000

Now include 95% CIs from bootstrap resampling.
Given the CIs, how confident are you in the model’s performance?
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Part 4: Case Study: 20
Newsgroups Classification
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20 Newsgroups: classification task
Predict the discussion group label from the post text.
Usenet posts from 20 topical forums (sports, politics, tech, religion).
20 categories, balanced enough that accuracy is meaningful.
We strip headers/footers/quotes to focus on content.
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Dataset overview
Train/test splits come from scikit-learn’s fetch_20newsgroups.
Each example is a short, noisy, user-generated post.

OUTPUT

Train size: 11314  Test size: 7532
Classes: 20

49CSE 447/517 26wi - NLP



Example posts (truncated)
Look for topical keywords that hint at the group label.

OUTPUT

[rec.autos] I was wondering if anyone out there could enlighten me on this car I saw the other 
day. It was a 2-door sports car, looked to be from the late 60s/ early 70s. It was called a...

[comp.sys.mac.hardware] --

[comp.graphics] Hello, I am looking to add voice input capability to a user interface I am 
developing on an HP730 (UNIX) workstation. I would greatly appreciate information anyone would 
care to...
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Bigram example: phrase cues
Bigrams capture short phrases (e.g., “space shuttle”, “power supply”).

OUTPUT

Example bigrams: ['60s early' 'info funky' 'know tellme' 'late 60s' 'looked late'
 'looking car' 'model engine' 'production car' 'really small' 'saw day']
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Class distribution (train split)
Classes are roughly balanced, but not perfectly uniform.
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Model A: TF-IDF unigrams + L2 logistic regression
TF-IDF reduces weight on common terms.
L2 regularization discourages overly large weights.
Strong baseline with relatively compact feature space.
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Model B: TF-IDF unigrams+bigrams + L1 logistic
regression

Bigrams add short-phrase cues.
L1 encourages sparse, feature-selective weights.
More features, higher risk of overfitting on small topics.
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Accuracy + micro/macro precision/recall/F1
Micro averages track overall correctness; macro highlights per-class
balance.
Micro: pool all predictions, then compute global  from total
TP/FP/FN.

P/R/F1

Macro: compute  per class, then average (each class equal
weight).

P/R/F1

OUTPUT

Model A: acc=0.648
  micro: P=0.648 R=0.648 F1=0.648
  macro: P=0.650 R=0.635 F1=0.636
Model B: acc=0.557
  micro: P=0.557 R=0.557 F1=0.557
  macro: P=0.619 R=0.546 F1=0.567
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 emphasizes recall when Fβ β > 1

Example:  weights recall higher than precision.F2

Useful when missing a topic is costlier than a false alarm.

OUTPUT

Model A F2: 0.634
Model B F2: 0.550
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Confusion matrix (best macro F1)
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Bootstrapped confidence intervals
95% CIs for accuracy and macro F1.
Overlapping intervals would suggest weak evidence of a difference.
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Model comparison takeaways
Model A is a strong, simple baseline with fewer features.
Model B adds phrase cues but can trade speed for sparsity.
Macro metrics and the confusion matrix show where each model
struggles.
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