Natural Language Processing
(CSE 447/517)

Winter 2026 e Noah Smith
Many figures from Jurafsky and Martin ch. 7-8



“One-hot” vectors allow lookup of a word’s embedding
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IDTU LY  Selecting the embedding vector for word Vs by multiplying the embedding
matrix E with a one-hot vector with a 1 in index 5.



Feedforward neural

language model
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Forward inference in a feedforward neural language model. At each timestep
t the network computes a d-dimensional embedding for each context word (by multiplying a
one-hot vector by the embedding matrix E), and concatenates the 3 resulting embeddings to
get the embedding layer e. The embedding vector e is multiplied by a weight matrix W and
then an activation function is applied element-wise to produce the hidden layer h, which is
then multiplied by another weight matrix U. Finally, a softmax output layer predicts at each
node i the probability that the next word w; will be vocabulary word V;.



Learning a neural 4-gram model (including embeddings)

A+ =
\“
0@l —— p(aardvark]...) *
(:) N @ , ‘I
1835 B .
,’E @ .
s .'
: ORI - 89— p(col..)
' for A
: s & :
N 1 | TR St 0992 )1 4 ;
B .=
all Wiy | t_) v . Ya; p(fish|...) *
Vg I &) :
NG S , \
ANY 1@ :
] Melis1 @ U@ :
W, 0[0] —>
t g Sy, E e \\Y4 h U p(zebral...)
X  dxjv] 3dx1  dyx3d dpx1 [VIxdy y
[V[x3 [VIx1
input layer embedding hidden output layer
one-hot layer layer softmax
vectors
JUT0IWALE] Learning all the way back to embeddings. Again, the embedding matrix E is

shared among the 3 context words.



Simple recurrent neural network
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10101k W] Simple recurrent neural network illustrated as a feedforward network. The hid-
den layer h,_; from the prior time step is multiplied by weight matrix U and then added to
the feedforward component from the current time step.




“Unrolled” computation in a simple RNN
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A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared across all time steps.



Comparing feedforward (a) and recurrent (b) LMs
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Simplified sketch of two LM architectures moving through a text, showing a
schematic context of three tokens: (a) a feedforward neural language model which has a fixed
context input to the weight matrix W, (b) an RNN language model, in which the hidden state
h;_{ summarizes the prior context.



Training an RNN language model
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Weight tying (reusing the embedding matrix)
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RNN for classification

0T R R  Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.



Bidirectional RNN
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3T R BBE A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.



RNNs for text generation
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DT CRRY  Autoregressive generation with an RNN-based neural language model.




Stacked RNN
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IDTOICR ML  Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.



Long short-term memory (single unit)

AT R BKR] A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, 4, _;, and the previous context, ¢;_;. The outputs are a new hidden
state, h; and an updated context, c;.



Operations inside the LSTM cell

Forgetting some info from the past context: fi = o(Ush—1 +Wyx)
k

C_10F “keep”

Extract information from hidden state and current input: g = tanh(Ugh;—; +W,x;)

Select information to add to the current context: i, = o (U;h,_1 +W,x;)

“update” Jt g: ©i; “update’

/ “keep”
Generate current context: ¢ =Jji + k

Output gate to build current hidden state:
0 = O-(Uoht—l +W0xt)
ht Oy @tanh(ct)




Comparing neural units
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10T R BE]  Basic neural units used in feedforward, simple recurrent networks (SRN), and

long short-term memory (LSTM).




RNN
architectures
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c) language modeling d) encoder-decoder

IOT W] Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map
each input token x; to an output token y;. In sequence classification we map the entire input sequence to a single

class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence x to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.



Translation with an RNN encoder-decoder
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JOfull (X Bl) Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target sentences are concatenated with a separator token in between,
and the decoder uses context information from the encoder’s last hidden state.



Translation with an RNN encoder-decoder
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3T CR L] A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, 4}, serves as the context for the
decoder in its role as hg in the decoder RNN, and is also made available to each decoder hidden state.



Training an RNN encoder-decoder
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IOPVCE NP  Training the basic RNN encoder-decoder approach to machine translation. Note that in the

decoder we usually don’t propagate the model’s softmax outputs J;, but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over y in the decoder in order
to compute the loss at each token, which can then be averaged to compute a loss for the sentence. This loss is

then propagated through the decoder parameters and the encoder parameters.




