Words and Tokens

Rob Minneker

1/9/2026 CSE 447/517 26wi - NLP

Administrivia

* AO is out, no submission, just for practice

* Project specs are live on course website!
— Teams of 3
— Various checkpoints throughout the quarter
— TODO: Read specs, form teams, ask any questions on Ed

PART 1: FOUNDATIONS

Why tokens matter (1/6)

Tokenization: the process of segmenting text into minimal units,
or tokens, is foundational to all NLP tasks.

Why tokens matter (2/6)

* Early NLP systems, such as ELIZA, relied on pattern matching
over tokens (often words) to create the illusion of
conversation.

— Example: ELIZA used simple patterns like I need X and change
the words into suitable outputs like What would it mean to

you 1f you got X?
— Token boundaries define what patterns can be matched, impacting
system behavior.

ELIZA Example

* Rogerian psychotherapist imitation via pattern matching

1/9/2026

User:

ELIZA:

User:

ELIZA:

User:

ELIZA:

User:

ELIZA:

User:

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY

My mother takes care of me.

WHO ELSE IN YOU FAMILY TAKES CARE OF YOU

My father.

YOUR FATHER

You are like my father in some ways.

Weizenbaum (1966)

CSE 447/517 26wi - NLP

Why tokens matter (3/6)

* Tokenization is the first step in most NLP pipelines

Language

tokens words

N
N -

Model Oracle

decoding

N e e e e e e e -

1/9/2026 CSE 447/517 26wi - NLP 7

Why tokens matter (4/6)

* The definition of a “token” is task-dependent.

— For language models, punctuation marks (e.g., ., ,, !) are typically
treated as tokens.

— For some tasks (e.g., sentiment analysis), splitting contractions or
handling hyphenation may be important.

Why tokens matter (5/6)

* Applications:
— Pattern matching: Regular expressions such as \bword\b operate
over token boundaries.

— Statistical analysis: Frequency counts and laws (Zipf’s, Heaps’)
depend on token definitions.

— Sequence models: Input and output spaces are defined over tokens,
affecting vocabulary size.

Why tokens matter (6/6)

Formally, tokenization defines a function:
Tokenize(T) = [tq, ty, ..., t,]

where T is the input text and t; are the resulting tokens.

 The choice of tokenization granularity (word, subword,
character) can dramatically influence model capacity,
generalization, and robustness.

What is a “word”? (1/6)

A “word” in NLP is a fundamental linguistic unit, but its definition
is context- and task-dependent.

What is a “word”? (2/6)

* |n written text, a “word” is often defined as a sequence of
alphabetic characters separated by whitespace or
punctuation.

— Regular expression example: \w+ matches contiguous word
characters.

— Formal definition: a “word” is any substring w such that w is
maximal and w € X%, where X is the alphabet, and w is bounded by
whitespace or punctuation.

What is a “word”? (3/6)

* Counting words can differ based on punctuation handling:

— “Let’s go to the picnic.” (punctuation excluded: 5 words; included: 6
tokens)

— Tokenization schemes must specify whether punctuation is a
separate token.

What is a “word”? (4/6)

In spoken language, word boundaries and wordhood are less
clear:

— Disfluencies (e.g., “uh”, “um”), fragments, and filled pauses
complicate word segmentation.

— Example: “l do uh main- mainly business data processing”
— “uh”: filled pause

— “main-": fragment (incomplete word)

— “mainly”: completed word

What is a “word”? (5/6)

Applications:

* For automatic speech recognition (ASR), retaining filled
pauses like “uh” and “um” can be informative:
— These tokens may signal hesitation, uncertainty, or pragmatic

meaning.
— “uh” vs “um” may have distinct discourse functions (e.g., shorter vs

longer pause).

What is a “word”? (6/6)

The definition of “word” affects downstream tasks:

— Morphological analysis, syntactic parsing, and language modeling
depend on consistent tokenization.

— Different applications (e.g., IR vs ASR) may require distinct word
definitions.
The choice of word definition is thus a design decision,

shaped by data modality, annotation conventions, and task
requirements.

Types vs instances (1/4)

A type is a unique wordform in a text, while an instance (token)
is a specific occurrence of a word in the running text.

* Types correspond to the vocabulary set size (|V]); instances to
the total word count (N).

— Example: In the sentence “The picnic was a great picnic”, picnic
counts as one type, two instances.

Types vs instances (2/4)

* Formal definitions:
— Type:w € V, where V = {unique wordforms in corpus}
— Instance: Each position i in the text, w;, where 1 < i < N

Types vs instances (3/4)

 Worked example: For “The picnic was a great picnic”
— Tokens (instances): [The, picnic, was, a, great, picnic] (N = 6)
— Types: [The, picnic, was, a, great] (|V| = 5)

Types vs instances (4/4)

e (ase sensitivity decision:
— “They” vs “they”: Should these count as the same type?
— Feature: Maintain case to capture proper nouns or sentence-initial position
— Normalization: Lowercase all to merge types, reducing vocabulary size

Applications:

* Type-token statistics are central to language modeling and corpus
linguistics

 Heaps’ law relates vocabulary growth (types) to corpus size
(instances): |V| = kNB

Multilinguality: when “words” aren’t separated by
spaces (1/2)

In many languages (e.g., Chinese, Japanese, Thai), text does not
use whitespace to separate words, complicating tokenization and
downstream NLP tasks.

— Example: Chinese string “BJ§BR3 A SR 2= 7 (Yao Ming reaches the
finals) admits multiple valid segmentations.

— Possible: “BkBR / HA / SRZF|R " vs. “Bk / BRIFE / AR/ F”

Multilinguality: when “words” aren’t separated by
spaces (2/2)

* The concept of “word” is language-dependent and often
ambiguous; segmentation choices can alter meaning and
system performance.

 Ambiguity in segmentation:

— For a character sequence ¢4 ¢, ... ¢, the number of segmentations
equals the number of binary partitions:

Number of segmentations = 2"~1

- hard to do, language specific, sensitive to code switching

Vocabulary growth and the “too many words”
problem (1/4)

Vocabulary Growth and the “Too Many Words” Problem

* The number of unique word types (|V]) in a corpus grows as
more tokens (N) are observed.
— Heaps’ (Herdan’s) Law formalizes this growth:
V| = kNP
wherek > 0and0 < f < 1.

Intuitively: vocabulary expands sublinearly with corpus size but
never saturates.

Vocabulary growth and the “too many words”
problem (2/4)

Vocabulary size as a function of f

text length, computed on the 10 |
Gutenberg corpus of publicly :
available books

—
o
~

~ vocabulary size grows little
faster than the square root of
its length in words

dictionary (D)
2

-
o
N

— =1
— y=0.44]

—
o

sl

100] PR Y B
10° 10" 10% 10® 10* 10° 10° 10" 10% 10°
total number of words (w)

1/9/2026 CSE 447/517 26wi - NLP

Vocabulary growth and the “too many words”
problem (3/4)

* Function words vs. content words:
— Function words (e.g., the, and) are frequent and saturate quickly.
— Content words (e.g., names, technical terms) grow continually,
driving |V | upward.
— Proper nouns and specialized vocabulary lead to an open-ended
lexicon.

Vocabulary growth and the “too many words”
problem (4/4)

* The “too many words” problem:

— Large, ever-growing vocabularies make language modeling and NLP
tasks challenging.

— Rare and unseen words (out-of-vocabulary, OOV) are pervasive,
especially in open domains.

PART 2: CHARACTERS AND REPRESENTATION
(UNICODE + UTF-8)

Unicode basics (1/5)

Unicode Basics
* Unicode is a universal character encoding standard designed
to represent text from all writing systems and symbols in a
consistent way.
— Motivation: ASCIl encodes only 128 characters, insufficient for
global text processing.
— Unicode enables NLP systems to process multilingual, cross-script,
and symbolic data.

Unicode basics (2/5)

Key distinction:

Code point: An abstract numerical identifier for a character, written
as U + XXXX.

Example: U + 0061 is the code point for the Latin letter ‘a’.

Glyph: The visual rendering of a code point, determined by font and
style.

The same code point may map to different glyphs in different fonts
or contexts.

Unicode basics (3/5)

* Each code point is independent of encoding and visual
appearance.

— For example, the code point U + 00E9 represents ‘é’, regardless of
how it is displayed. (we’ll see this in a moment)

Unicode basics (4/5)

* Code points for selected characters:
— Latin small letter ‘a’: U 4+ 0061
— Latin small letter ‘¢’: U + 00E9
— Chinese character “4R’: U + 4F60
— Emoji ‘®@)’: U + 1F604

Unicode basics (5/5)

Unicode enables algorithms to manipulate text as sequences
of code points, not bytes or glyphs.

Unicode’s abstraction is foundational for robust, language-
independent NLP systems.

— Currently ~150k characters defined, out of ~1.1M

UTF-8 encoding (1/3)

* Unicode Transformation Format — 8 bit (UTF-8) is a variable-
length encoding for Unicode code points, designed to be:
— Space-efficient for ASCIl (one byte per character)

— Backward-compatible with legacy ASCII systems
— Capable of representing all Unicode code points (0 to 10FFF F;)

1

2

3

4

UTF-8 encoding (2/3)

* |ntuition:

— UTF-32 directly encodes code points as 4 bytes: simple but wasteful

for common text

— UTF-8 uses 1-4 bytes per code point, depending on its value:

1/9/2026

OXXXXXXX

110xxxxx 1OXXXXXX

1110xxxxX L1OXXXXXX 1OXXXXXX

11110xxx 10xxxXxXX 1OXXXXXX LOXXXXXX

CSE 447/517 26wi - NLP

U+0000 to U+007F

U+0080 to U+07FF

U+0800 to U+FFFF

U+10000 to U+10FFFF

34

UTF-8 encoding (3/3)

Efficient text storage/transmission in NLP pipelines
Consistent handling of multilingual corpora
Enables byte-wise compatibility with legacy systems

Note: len(s) gives code points, same as “chars”
— len(s.encode ("utf-8")) gives bytes used

Tokenization implications (1/6)

In multilingual NLP, text is often represented in Unicode,
encoded in UTF-8 for storage and processing.

UTF-8 encodes Unicode characters as sequences of 1—4 bytes,
but not all byte sequences are valid characters.

Tokenization implications (2/6)

e Byte-Pair Encoding (BPE) and similar algorithms may operate
on UTF-8 bytes rather than characters.

— Merges are performed on byte sequences, not necessarily
respecting character boundaries.

— This ensures all possible byte values (0—255) are covered: no
“unknown byte” issue.

Tokenization implications (3/6)

* Potential Issues:
— If a merge spans across UTF-8 character boundaries, it may create
invalid or uninterpretable byte sequences.
— For example, merging bytes from different characters may break
Unicode validity.
— Such merges can yield tokens that do not correspond to any real
character or grapheme.

Tokenization implications (4/6)

 Example:
— Suppose we have the UTF-8 encoding for é’: [0xC3, O0xA9]

— If BPE merges 0xA9 from ‘é’ with a following ASCII byte, the result
is not a valid character.

— e.g., the merge operation:
merge: [0xC3, O0xA9] + [0x20] -> [0xC3, O0xA9, 0x20]

may produce an invalid token if not aligned to character boundaries.

Tokenization implications (5/6)

 What happens if we build a model expecting “é” ([0xC3,

0xA91]) as an output and we get “é¢ ” out? [0xC3, O0OxA9,
0x20]

* What about if we are looking for output begins with “Yes” or
((NOH?

Tokenization implications: curveball

 What happens if we build a model expecting “é” ([0xC3,

0xA91]) as an output and we get “é¢ ” out? [0xC3, O0OxA9,
0x20]

* What about if we are looking for output begins with “Yes” or
((NOH?

— What if the model starts outputting “Notor”?

Tokenization implications: curveball solution

 What happens if we build a model expecting “é” ([0xC3,

0xA91]) as an output and we get “é¢ ” out? [0xC3, O0xA9,
0x20]

 What about if we are looking for output begins with “Yes” or
IINO”?
— What if the model starts outputting “Notor”?

 Option 1: Don’t use fragile string matching, use logits directly

* Option 2: If you can’t use logits, go for token ids and rigorously
test/validate the stack

* Option 3: Use structured outputs if available (can be combined with others)

Tokenization implications (6/6)

* Applications:
— Robust tokenization strategies must account for Unicode encoding
to avoid generating ill-formed tokens.

— Many modern models (e.g., GPT-2/3) use byte-level BPE to simplify
the vocabulary and avoid out-of-vocabulary (OOV) issues.

— Ensuring merges only occur within valid UTF-8 boundaries is
essential for text integrity and reversibility.

PART 3: TOKENIZATION STRATEGIES OVERVIEW

Three candidates for units (1/5)

Tokenization: the process of segmenting text into units
(“tokens”) for downstream NLP tasks.

Three candidates for units (2/5)

* Three primary candidates for tokenization units:
— Words:

* Pros: Intuitive and meaning-rich; often correspond to linguistic units.
 Cons: Ambiguous boundaries. Hard to define consistently across languages.
— Morphemes:
* Linguistically motivated sub-word units (smallest meaning-bearing elements).
* Pros: Capture internal structure of words, useful for morphology-rich languages.
* Cons: Requires complex, language-specific analyzers. Not always uniquely defined.
— Characters:
* Atomic, well-defined units.
* Pros: Language-independent; no segmentation ambiguity.
* Disadvantages: Too small for most semantic tasks; long sequences, reduced efficiency.

Three candidates for units (3/5)

Applications:

 Word-based models (e.g., classical bag-of-words, word2vec)
often struggle with unseen or rare words.

e Character-level models are robust to out-of-vocabulary items
but less semantically informative.

Three candidates for units (4/5)

* Practical compromise: subwords

— Subword units (e.g., via Byte-Pair Encoding, Unigram LM) combine
the advantages of words and characters.

— Recombine to represent unseen words, reducing out-of-vocabulary
rates.

— Allow efficient vocabulary size control:

Subword vocabulary: V = {un, ##seen, word}

Three candidates for units (5/5)

— Can generate unseenwordas un + ##seen+ word -
Widely adopted in modern NLP architectures (e.g., BERT, GPT).

* Key insight: The choice of tokenization unit directly impacts
model vocabulary, data sparsity, and cross-lingual
applicability.

PART 4: SUBWORD TOKENIZATION — BYTE-PAIR
ENCODING (BPE)

Big picture: trainer + encoder (1/5)

Byte-Pair Encoding (BPE) employs a two-stage architecture: a
trainer builds the merge rules (vocabulary), and an encoder
applies these merges to segment new text.

Big picture: trainer + encoder (2/5)

 BPE Trainer: Learns a sequence of symbol merges from a
training corpus.
— Begins with a vocabulary of single characters.
— lteratively finds the most frequent adjacent symbol pair and merges

it.
— The process is repeated for N steps to build a vocabulary of
frequent subwords.

Big picture: trainer + encoder (3/5)

 BPE Encoder: Segments input text by greedily applying the

learned merges.

— Given a word, repeatedly merges symbol pairs according to the
learned order.

— Produces a sequence of subword units present in the final BPE
vocabulary.

Big picture: trainer + encoder (4/5)

 Formalization:
At each step: (x*,y*) = argr(na>§ freq(x, y)
X,y

Merge (x*,¥*) = new symbol z = x"y"

* Key Insights:
— The trainer determines which subword units are represented,
balancing vocabulary size with corpus coverage.

— The encoder is deterministic: the same input string always yields
the same segmentation under fixed merges.

Big picture: trainer + encoder (5/5)

Applications:

 Used in modern NLP models (e.g., GPT) to handle rare words,
reduce vocabulary size, and improve generalization.

BPE training: core algorithm intuition (1/5)

Byte-Pair Encoding (BPE) Training: Core Algorithm Intuition

 BPE is an unsupervised, greedy algorithm that constructs a
subword vocabulary by iteratively merging the most frequent
pair of adjacent symbols in a corpus.

* Initial vocabulary consists of all characters in the corpus.

— Each word is represented as a sequence of characters (with special
end-of-word marker).

BPE training: core algorithm intuition (2/5)

* At each iteration:
— ldentify the most frequent adjacent symbol pair (e.g., n e in new).

— Merge this pair into a new symbol (e.g., ne), updating both the
corpus and the vocabulary.

BPE training: core algorithm intuition (3/5)

Example: Corpus = set new new renew reset renew

— Step 0: Words are tokenized as sequences of characters:
— S e t,n e w,n e w,r enew,rese¢trenew
— Step 1: Count adjacent pairs; most frequentis n e.
* Merge:n e o ne
e Update:ne w,r e ne w,etc.
— Step 2: Next frequent pair is ne w.
* Merge:ne w— new
e Update: new, r e new, etc.
— Further merges may create higher-level subwords (e.g., re— prefix).

BPE training: core algorithm intuition (4/5)

e BPE discovers recurring subword patterns (e.g., re—) without linguistic
supervision.

* Pseudocode (from J&M Fig. 2.6):
function B YTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V <—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens k times
t1., tg < Most frequent pair of adjacent tokens in C
tvew <t + IR # make new token by concatenating
VeVt taew # update the vocabulary
Replace each occurrence of #7, tg in C with #yzy # and update the corpus

return V

BPE training: core algorithm intuition (5/5)

Applications:

* Produces subword units that capture morphological structure
and rare word forms.

 Widely used in neural machine translation and large language
models.

BPE “in practice” (1/6)

 BPE is applied over token sequences, often at the byte level
for maximal coverage.
— Byte-level BPE operates on UTF-8 byte sequences, ensuring
compatibility with any text.
— lllegal or rare byte sequences are typically filtered to prevent
encoding errors.

— This approach yields robust, language-agnostic tokenization, but
may ignore linguistic boundaries.

BPE “in practice” (2/6)

* Pretokenization with Regex:
— Pretokenization splits raw text into initial fragments using regular
expressions.
— Common regex patterns: whitespace (\ s+), punctuation
([.,!?]), and digit chunking (\d+).
— Clitic handling: patterns like (\w+) ' (s| re|ve) to preserve
contractions as units.

— Formally, given input x, pretokenizer P maps x = (wq,ws,...,w,,),
where each w; is a fragment.

BPE “in practice” (3/6)

 Multilingual tokenization introduces vocabulary imbalances.

BPE trained on English-heavy corpora oversegments other
languages:
Non-English words split into longer subword sequences.

Leads to longer input sequences and higher computational cost for
underrepresented languages.

BPE “in practice” (4/6)

e Unigram LM Tokenization (Alternative):
— Unigram LM defines a probabilistic model over possible subword
segmentations:

Segment(x) = arg maxP(S)
SES(x)

BPE “in practice” (5/6)

* S:segmentation, P(S): product of subword probabilities.

Contrast: BPE is deterministic and greedy; Unigram LM is
probabilistic and can sample multiple segmentations.

Linguistic pros/cons:
* Unigram LM can encode alternative morphological analyses.

* BPE is preferred for efficiency, lossless compression, and deterministic
decoding.

BPE “in practice” (6/6)

Applications:

* Engineering: BPE is favored for large-scale, multilingual
systems due to speed and simplicity.

* Research: Unigram LM tokenization supports richer linguistic
modeling, especially for morphologically complex languages.

PART 5: RULE-BASED TOKENIZATION (WHEN
YOU WANT “WORDS”)

Why rule-based still matters (1/4)

Rule-based tokenization refers to the use of handcrafted
patterns or algorithms to segment text into word-like units, as
opposed to relying solely on statistical or neural models.

 Many NLP tasks require precise, linguistically motivated
tokens:

— Syntactic parsing, morphological analysis, and social science studies
often demand word-like units that respect linguistic conventions.

Why rule-based still matters (2/4)

English tokenization desiderata highlight why rules are still
essential:

Separate most punctuation marks from words (e.g., “hello!” = “hello”, “1”)
Preserve internal punctuation in abbreviations or acronyms (e.g., U.S.A .,
e.g.,co-op)

Retain entities with internal structure as single tokens:

Monetary amounts: $45.55

Dates: 12/31/2023

URLs: https://www.example.com

Hashtags and emails: #NLP, user@example.com

Why rule-based still matters (3/4)

* Rule-based approaches handle language-specific conventions

more robustly:

— Numeric formats differ (e.g., English 1, 000 .5 vs. German
1.000,5)

— Rule-based tokenizers can use regular expressions such as

\S[0-91+(\.[0-9]1{2})~"
for monetary amounts, ensuring correct treatment.

Why rule-based still matters (4/4)

Applications:

— Preprocessing for downstream tasks that assume word boundaries
(e.g., part-of-speech tagging)

— Social media and domain-specific texts, where statistical models
may lack coverage

— Linguistic research requiring faithful segmentation of complex
forms

— Statistical and neural tokenizers may over-split or under-split
without explicit rules, making rule-based methods indispensable for
accuracy in many scenarios.

Tokenization standards (1/4)

* Tokenization speed is critical:

— Tokenization is a prerequisite for downstream tasks (e.g., parsing,
tagging).
— Inefficient tokenization can bottleneck large-scale NLP workflows.

— Real-world systems often require processing millions of words per
second.

Tokenization standards (2/4)

* Standard approaches leverage regular expressions and finite-
state automata:

— Regex-based tokenizers (e.g., NLTK’s regexp_tokenize) use patterns
such as +| [*\w\s]+ to separate words from punctuation.

— Formally, let be the input alphabet; a finite-state automaton (FSA)
defines a set of states and transitions to efficiently recognize token
boundaries.

— Example FSA for whitespace tokenization:

Tokenization standards (3/4)

* Intuition: Tokenization standards must balance linguistic
accuracy with computational efficiency.
— Simple whitespace or punctuation-based splitting misses edge
cases (e.g., “can’t”).
— Overly complex patterns may slow processing and reduce
maintainability.
Applications:
* Preprocessing for language modeling, parsing, and
information retrieval.

Tokenization standards (4/4)

* Standardized tokenization ensures comparability across
corpora and experiments.

Regex tokenizer example (NLTK-style) (1/4)

Rule-based tokenization with regular expressions enables
fine-grained control over how input text is segmented into
tokens, crucial for downstream NLP tasks.

Key idea: A regex tokenizer applies pattern-matching rules to
extract tokens, rather than relying solely on whitespace or
built-in language rules.

Example input: That U.S.A. poster-print costs $12.40...
Typical regex pattern components (NLTK-style):

Regex tokenizer example (NLTK-style) (2/4)

Abbreviations [A-Z]\. (?:[A-Z]\.)+ Match acronyms (e.g., U.S.A.)

Hyphenated words \wt (?:=\wt) + Match hyphenated words (e.g., poster-print)
Currency and numbers \\d+ (?:\.\d+) ? Match currency and numbers (e.g., \12.40)
Ellipsis \. {3} Match ellipsis (...)

Punctuation [., 127 :] Match punctuation marks

1/9/2026 CSE 447/517 26wi - NLP 77

Regex tokenizer example (NLTK-style) (3/4)

* Output token list for the example:
[That, U.S.A., poster—print, costs, $12.40, ...]

Applications:

* Adapting regex patterns allows for custom tokenization, such
as:

— Preserving emails as single tokens: add [\w\.-]+@ [\w\.-]+to
the pattern

— Handling URLs, hashtags, or domain-specific entities

Regex tokenizer example (NLTK-style) (4/4)

 Limitations:

— Rule-based tokenizers may miss linguistic subtleties (e.g.,
contractions, ambiguous cases)

— Maintenance and extensibility can be challenging for highly variable
data

PART 6: CORPORA, VARIATION, AND
TOKENIZATION CHOICES

Why corpora context matters (1/5)

Corpora context refers to the social, linguistic, and situational
factors surrounding the creation of text. These dimensions
crucially impact linguistic analysis, annotation, and tokenization
decisions.

Why corpora context matters (2/5)

* Text is always situated: speaker, dialect, time, and
communicative purpose influence content
— Example: Transcripts from therapy sessions (e.g., ELIZA dialogues)
differ from newswire

— Speaker intent and formality shape lexical choice, syntax, and
segmentation

Why corpora context matters (3/5)

* Variation dimensions affect language data:

Language: Over 7000 languages, each with unique orthography and
morphology

Dialects/Varieties: Features in African American English (AAE) may
alter word boundaries or spelling (e.g., “gon’” for “going to”)

Genre: Tokenization differs for news, fiction, medical notes, or
conversational transcripts

Medical notes: “bp120/80” (blood pressure) vs. standard prose

Why corpora context matters (4/5)

* Code-switching and mixed-language phenomena complicate
tokenization
— Example: Social media post mixing English and Spanish (“Estoy
happy today!”)
— Algorithms must handle multilingual word boundaries and hybrid
grammar

Applications:

* Tokenizer design must be corpus-aware; generic rules may fail
on nonstandard or domain-specific text

Why corpora context matters (5/5)

Annotation guidelines often require adaptation to the
sociolinguistic context of the corpus

Zipf’s Law and Heaps’ Law depend on corpus context:
— i.e. empirical statistics of the corpus

RECAP: PUTTING IT ALL TOGETHER

Tokenization design decision framework (1/4)

Tokenization is the process of segmenting text into units (tokens)
for downstream NLP tasks. Selecting an appropriate tokenization

strategy is critical, as it affects model performance, fairness, and
linguistic adequacy.

Tokenization design decision framework (2/4)

The optimal tokenization scheme depends on the downstream task and linguistic context.

For parsing or syntax-sensitive applications:

— Rule-based or word-level tokenization is preferred, possibly augmented with clitic handling.

— Example: English contractions (“don’t” — “do” + “n’t”) require splitting to preserve syntactic
structure.

For language models and open-vocabulary generation:

— Subword tokenization (e.g., Byte-Pair Encoding, Unigram LM) balances vocabulary size and coverage.

— Byte-level tokenization ensures safety for rare or unseen scripts.

— Example: BPE learns frequent subword units such that common words are single tokens, rare words
split into smaller units.

For multilingual fairness:

— Measure and minimize oversegmentation, especially in morphologically rich or low-resource
languages.

— Evaluate per-language token efficiency (e.g., average tokens per word, coverage rate).

Tokenization design decision framework (3/4)

Applications:

* When designing a tokenizer, analyze the trade-off between
vocabulary size, out-of-vocabulary (OOV) rate, and token
sequence length.

Tokenization design decision framework (4/4)

Formally, let T be the tokenizer, V the vocabulary, and S the set
of input sentences:

mTin [ESGS[Ien(T(S))] subjectto |[V| <N, OOV(T,S) <e€

where N is a vocabulary size constraint, and € is a target OOV
rate.

* Consider sociolinguistic factors; a tokenization scheme should
not systematically disadvantage any language or dialect.

Next time...

Language

Model Oracle

1/9/2026 CSE 447/517 26wi - NLP 91

Sources

Content derived from: J&M Ch. 2

Appendix: Code snippet

(0x00E9))
(0x0065) + chr(0x0301))

print (chr
print (chr
print (bytes.fromhex ("c3 a9") .decode ("utf-8"))
print (bytes.fromhex ("c3 a9 20") .decode ("utf-8"))
print (chr (OxFFFD))

(

print (bytes.fromhex ("c3 a9 a9") .decode ("utf-8"))

	Slide 1: Words and Tokens
	Slide 2: Administrivia
	Slide 3: Part 1: Foundations
	Slide 4: Why tokens matter (1/6)
	Slide 5: Why tokens matter (2/6)
	Slide 6: ELIZA Example
	Slide 7: Why tokens matter (3/6)
	Slide 8: Why tokens matter (4/6)
	Slide 9: Why tokens matter (5/6)
	Slide 10: Why tokens matter (6/6)
	Slide 11: What is a “word”? (1/6)
	Slide 12: What is a “word”? (2/6)
	Slide 13: What is a “word”? (3/6)
	Slide 14: What is a “word”? (4/6)
	Slide 15: What is a “word”? (5/6)
	Slide 16: What is a “word”? (6/6)
	Slide 17: Types vs instances (1/4)
	Slide 18: Types vs instances (2/4)
	Slide 19: Types vs instances (3/4)
	Slide 20: Types vs instances (4/4)
	Slide 21: Multilinguality: when “words” aren’t separated by spaces (1/2)
	Slide 22: Multilinguality: when “words” aren’t separated by spaces (2/2)
	Slide 23: Vocabulary growth and the “too many words” problem (1/4)
	Slide 24: Vocabulary growth and the “too many words” problem (2/4)
	Slide 25: Vocabulary growth and the “too many words” problem (3/4)
	Slide 26: Vocabulary growth and the “too many words” problem (4/4)
	Slide 27: Part 2: Characters and Representation (Unicode + UTF-8)
	Slide 28: Unicode basics (1/5)
	Slide 29: Unicode basics (2/5)
	Slide 30: Unicode basics (3/5)
	Slide 31: Unicode basics (4/5)
	Slide 32: Unicode basics (5/5)
	Slide 33: UTF-8 encoding (1/3)
	Slide 34: UTF-8 encoding (2/3)
	Slide 35: UTF-8 encoding (3/3)
	Slide 36: Tokenization implications (1/6)
	Slide 37: Tokenization implications (2/6)
	Slide 38: Tokenization implications (3/6)
	Slide 39: Tokenization implications (4/6)
	Slide 40: Tokenization implications (5/6)
	Slide 41: Tokenization implications: curveball
	Slide 42: Tokenization implications: curveball solution
	Slide 43: Tokenization implications (6/6)
	Slide 44: Part 3: Tokenization Strategies Overview
	Slide 45: Three candidates for units (1/5)
	Slide 46: Three candidates for units (2/5)
	Slide 47: Three candidates for units (3/5)
	Slide 48: Three candidates for units (4/5)
	Slide 49: Three candidates for units (5/5)
	Slide 50: Part 4: Subword Tokenization — Byte-Pair Encoding (BPE)
	Slide 51: Big picture: trainer + encoder (1/5)
	Slide 52: Big picture: trainer + encoder (2/5)
	Slide 53: Big picture: trainer + encoder (3/5)
	Slide 54: Big picture: trainer + encoder (4/5)
	Slide 55: Big picture: trainer + encoder (5/5)
	Slide 56: BPE training: core algorithm intuition (1/5)
	Slide 57: BPE training: core algorithm intuition (2/5)
	Slide 58: BPE training: core algorithm intuition (3/5)
	Slide 59: BPE training: core algorithm intuition (4/5)
	Slide 60: BPE training: core algorithm intuition (5/5)
	Slide 61: BPE “in practice” (1/6)
	Slide 62: BPE “in practice” (2/6)
	Slide 63: BPE “in practice” (3/6)
	Slide 64: BPE “in practice” (4/6)
	Slide 65: BPE “in practice” (5/6)
	Slide 66: BPE “in practice” (6/6)
	Slide 67: Part 5: Rule-based Tokenization (When you want “words”)
	Slide 68: Why rule-based still matters (1/4)
	Slide 69: Why rule-based still matters (2/4)
	Slide 70: Why rule-based still matters (3/4)
	Slide 71: Why rule-based still matters (4/4)
	Slide 72: Tokenization standards (1/4)
	Slide 73: Tokenization standards (2/4)
	Slide 74: Tokenization standards (3/4)
	Slide 75: Tokenization standards (4/4)
	Slide 76: Regex tokenizer example (NLTK-style) (1/4)
	Slide 77: Regex tokenizer example (NLTK-style) (2/4)
	Slide 78: Regex tokenizer example (NLTK-style) (3/4)
	Slide 79: Regex tokenizer example (NLTK-style) (4/4)
	Slide 80: Part 6: Corpora, Variation, and Tokenization Choices
	Slide 81: Why corpora context matters (1/5)
	Slide 82: Why corpora context matters (2/5)
	Slide 83: Why corpora context matters (3/5)
	Slide 84: Why corpora context matters (4/5)
	Slide 85: Why corpora context matters (5/5)
	Slide 86: Recap: Putting it all together
	Slide 87: Tokenization design decision framework (1/4)
	Slide 88: Tokenization design decision framework (2/4)
	Slide 89: Tokenization design decision framework (3/4)
	Slide 90: Tokenization design decision framework (4/4)
	Slide 91: Next time…
	Slide 92: Sources
	Slide 93: Appendix: Code snippet

