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Administrivia

• A0 is out, no submission, just for practice

• Project specs are live on course website!

– Teams of 3

– Various checkpoints throughout the quarter

– TODO: Read specs, form teams, ask any questions on Ed
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PART 1: FOUNDATIONS

1/9/2026 CSE 447/517 26wi - NLP 3



Why tokens matter (1/6)

Tokenization: the process of segmenting text into minimal units, 
or tokens, is foundational to all NLP tasks.
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Why tokens matter (2/6)

• Early NLP systems, such as ELIZA, relied on pattern matching 
over tokens (often words) to create the illusion of 
conversation.

– Example: ELIZA used simple patterns like I need X and change 
the words into suitable outputs like What would it mean to 
you if you got X?

– Token boundaries define what patterns can be matched, impacting 
system behavior.
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ELIZA Example

• Rogerian psychotherapist imitation via pattern matching
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Why tokens matter (3/6)

• Tokenization is the first step in most NLP pipelines
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Why tokens matter (4/6)

• The definition of a “token” is task-dependent.

– For language models, punctuation marks (e.g., ., ,, !) are typically 
treated as tokens.

– For some tasks (e.g., sentiment analysis), splitting contractions or 
handling hyphenation may be important.
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Why tokens matter (5/6)

• Applications:

– Pattern matching: Regular expressions such as \bword\b operate 
over token boundaries.

– Statistical analysis: Frequency counts and laws (Zipf’s, Heaps’) 
depend on token definitions.

– Sequence models: Input and output spaces are defined over tokens, 
affecting vocabulary size.
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Why tokens matter (6/6)

Formally, tokenization defines a function:
Tokenize 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛

where 𝑇 is the input text and 𝑡𝑖 are the resulting tokens.

• The choice of tokenization granularity (word, subword, 
character) can dramatically influence model capacity, 
generalization, and robustness.
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What is a “word”? (1/6)

A “word” in NLP is a fundamental linguistic unit, but its definition 
is context- and task-dependent.
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What is a “word”? (2/6)

• In written text, a “word” is often defined as a sequence of 
alphabetic characters separated by whitespace or 
punctuation.

– Regular expression example: \w+ matches contiguous word 
characters.

– Formal definition: a “word” is any substring 𝑤 such that 𝑤 is 
maximal and 𝑤 ∈ Σ+, where Σ is the alphabet, and 𝑤 is bounded by 
whitespace or punctuation.
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What is a “word”? (3/6)

• Counting words can differ based on punctuation handling:

– “Let’s go to the picnic.” (punctuation excluded: 5 words; included: 6 
tokens)

– Tokenization schemes must specify whether punctuation is a 
separate token.
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What is a “word”? (4/6)

• In spoken language, word boundaries and wordhood are less 
clear:

– Disfluencies (e.g., “uh”, “um”), fragments, and filled pauses 
complicate word segmentation.

– Example: “I do uh main- mainly business data processing”

– “uh”: filled pause

– “main-”: fragment (incomplete word)

– “mainly”: completed word
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What is a “word”? (5/6)

Applications:

• For automatic speech recognition (ASR), retaining filled 
pauses like “uh” and “um” can be informative:

– These tokens may signal hesitation, uncertainty, or pragmatic 
meaning.

– “uh” vs “um” may have distinct discourse functions (e.g., shorter vs 
longer pause).
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What is a “word”? (6/6)

• The definition of “word” affects downstream tasks:

– Morphological analysis, syntactic parsing, and language modeling 
depend on consistent tokenization.

– Different applications (e.g., IR vs ASR) may require distinct word 
definitions.

• The choice of word definition is thus a design decision, 
shaped by data modality, annotation conventions, and task 
requirements.
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Types vs instances (1/4)

A type is a unique wordform in a text, while an instance (token) 
is a specific occurrence of a word in the running text.

• Types correspond to the vocabulary set size ( 𝑉 ); instances to 
the total word count (𝑁).

– Example: In the sentence “The picnic was a great picnic”, picnic
counts as one type, two instances.
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Types vs instances (2/4)

• Formal definitions:

– Type: 𝑤 ∈ 𝑉, where 𝑉 = {unique wordforms in corpus}

– Instance: Each position 𝑖 in the text, 𝑤𝑖, where 1 ≤ 𝑖 ≤ 𝑁
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Types vs instances (3/4)

• Worked example: For “The picnic was a great picnic”

– Tokens (instances): [The, picnic, was, a, great, picnic] (𝑁 = 6)

– Types: [The, picnic, was, a, great] ( 𝑉 = 5)
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Types vs instances (4/4)

• Case sensitivity decision:

– “They” vs “they”: Should these count as the same type?

– Feature: Maintain case to capture proper nouns or sentence-initial position

– Normalization: Lowercase all to merge types, reducing vocabulary size

Applications:

• Type-token statistics are central to language modeling and corpus 
linguistics

• Heaps’ law relates vocabulary growth (types) to corpus size 

(instances): 𝑉 = 𝑘𝑁𝛽
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Multilinguality: when “words” aren’t separated by 
spaces (1/2)

In many languages (e.g., Chinese, Japanese, Thai), text does not 
use whitespace to separate words, complicating tokenization and 
downstream NLP tasks.

– Example: Chinese string “姚明进入总决赛 ” (Yao Ming reaches the 
finals) admits multiple valid segmentations.

– Possible: “姚明 / 进入 / 总决赛 ” vs. “姚 / 明进 / 入决 / 赛”

1/9/2026 CSE 447/517 26wi - NLP 21



Multilinguality: when “words” aren’t separated by 
spaces (2/2)

• The concept of “word” is language-dependent and often 
ambiguous; segmentation choices can alter meaning and 
system performance.

• Ambiguity in segmentation:

– For a character sequence 𝑐1𝑐2 … 𝑐𝑛, the number of segmentations 
equals the number of binary partitions:

Number of segmentations = 2𝑛−1

 → hard to do, language specific, sensitive to code switching
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Vocabulary growth and the “too many words” 
problem (1/4)

Vocabulary Growth and the “Too Many Words” Problem

• The number of unique word types ( 𝑉 ) in a corpus grows as 
more tokens (𝑁) are observed.

– Heaps’ (Herdan’s) Law formalizes this growth:

𝑉 = 𝑘𝑁𝛽

where 𝑘 >  0 and 0 <  𝛽 <  1.

Intuitively: vocabulary expands sublinearly with corpus size but 
never saturates.
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Vocabulary growth and the “too many words” 
problem (2/4)

1/9/2026 CSE 447/517 26wi - NLP 24

Vocabulary size as a function of 
text length, computed on the 
Gutenberg corpus of publicly 
available books

~ vocabulary size grows little 
faster than the square root of 
its length in words



Vocabulary growth and the “too many words” 
problem (3/4)

• Function words vs. content words:

– Function words (e.g., the, and) are frequent and saturate quickly.

– Content words (e.g., names, technical terms) grow continually, 
driving 𝑉 upward.

– Proper nouns and specialized vocabulary lead to an open-ended 
lexicon.
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Vocabulary growth and the “too many words” 
problem (4/4)

• The “too many words” problem:

– Large, ever-growing vocabularies make language modeling and NLP 
tasks challenging.

– Rare and unseen words (out-of-vocabulary, OOV) are pervasive, 
especially in open domains.
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PART 2: CHARACTERS AND REPRESENTATION 
(UNICODE + UTF-8)
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Unicode basics (1/5)

Unicode Basics

• Unicode is a universal character encoding standard designed 
to represent text from all writing systems and symbols in a 
consistent way.

– Motivation: ASCII encodes only 128 characters, insufficient for 
global text processing.

– Unicode enables NLP systems to process multilingual, cross-script, 
and symbolic data.
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Unicode basics (2/5)

• Key distinction:

– Code point: An abstract numerical identifier for a character, written 
as 𝑈 + XXXX.

– Example: 𝑈 + 0061 is the code point for the Latin letter ‘a’.

– Glyph: The visual rendering of a code point, determined by font and 
style.

– The same code point may map to different glyphs in different fonts 
or contexts.
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Unicode basics (3/5)

• Each code point is independent of encoding and visual 
appearance.

– For example, the code point 𝑈 + 00𝐸9 represents ‘é’, regardless of 
how it is displayed. (we’ll see this in a moment)
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Unicode basics (4/5)

• Code points for selected characters:

– Latin small letter ‘a’: 𝑈 + 0061

– Latin small letter ‘é’: 𝑈 + 00𝐸9

– Chinese character ‘你’: 𝑈 + 4𝐹60

– Emoji ‘ ’: 𝑈 + 1𝐹60𝐴
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Unicode basics (5/5)

• Unicode enables algorithms to manipulate text as sequences 
of code points, not bytes or glyphs.

• Unicode’s abstraction is foundational for robust, language-
independent NLP systems.

– Currently ~150k characters defined, out of ~1.1M
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UTF-8 encoding (1/3)

• Unicode Transformation Format – 8 bit (UTF-8) is a variable-
length encoding for Unicode code points, designed to be:

– Space-efficient for ASCII (one byte per character)

– Backward-compatible with legacy ASCII systems

– Capable of representing all Unicode code points (0 to 10𝐹𝐹𝐹𝐹16)
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UTF-8 encoding (2/3)

• Intuition:

– UTF-32 directly encodes code points as 4 bytes: simple but wasteful 
for common text

– UTF-8 uses 1–4 bytes per code point, depending on its value:
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Bytes Bit Pattern Code Point Range

1 0xxxxxxx U+0000 to U+007F

2 110xxxxx 10xxxxxx U+0080 to U+07FF

3 1110xxxx 10xxxxxx 10xxxxxx U+0800 to U+FFFF

4 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx U+10000 to U+10FFFF



UTF-8 encoding (3/3)

• Efficient text storage/transmission in NLP pipelines

• Consistent handling of multilingual corpora

• Enables byte-wise compatibility with legacy systems

• Note: len 𝑠 gives code points, same as “chars” 

– len(s.encode("utf-8")) gives bytes used
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Tokenization implications (1/6)

• In multilingual NLP, text is often represented in Unicode, 
encoded in UTF-8 for storage and processing.

• UTF-8 encodes Unicode characters as sequences of 1–4 bytes, 
but not all byte sequences are valid characters.
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Tokenization implications (2/6)

• Byte-Pair Encoding (BPE) and similar algorithms may operate 
on UTF-8 bytes rather than characters.

– Merges are performed on byte sequences, not necessarily 
respecting character boundaries.

– This ensures all possible byte values (0–255) are covered: no 
“unknown byte” issue.
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Tokenization implications (3/6)

• Potential Issues:

– If a merge spans across UTF-8 character boundaries, it may create 
invalid or uninterpretable byte sequences.

– For example, merging bytes from different characters may break 
Unicode validity.

– Such merges can yield tokens that do not correspond to any real 
character or grapheme.
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Tokenization implications (4/6)

• Example:

– Suppose we have the UTF-8 encoding for ‘é’:[0xC3, 0xA9]

– If BPE merges 0xA9 from ‘é’ with a following ASCII byte, the result 
is not a valid character.

– e.g., the merge operation:

merge: [0xC3, 0xA9] + [0x20] -> [0xC3, 0xA9, 0x20]

may produce an invalid token if not aligned to character boundaries.
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Tokenization implications (5/6)

• What happens if we build a model expecting “é” ([0xC3, 
0xA9]) as an output and we get “é ” out? [0xC3, 0xA9, 
0x20]

• What about if we are looking for output begins with “Yes” or 
“No”?
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Tokenization implications: curveball

• What happens if we build a model expecting “é” ([0xC3, 
0xA9]) as an output and we get “é ” out? [0xC3, 0xA9, 
0x20]

• What about if we are looking for output begins with “Yes” or 
“No”?

– What if the model starts outputting “Notor”?
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Tokenization implications: curveball solution

• What happens if we build a model expecting “é” ([0xC3, 
0xA9]) as an output and we get “é ” out? [0xC3, 0xA9, 
0x20]

• What about if we are looking for output begins with “Yes” or 
“No”?
– What if the model starts outputting “Notor”?

• Option 1: Don’t use fragile string matching, use logits directly

• Option 2: If you can’t use logits, go for token ids and rigorously 
test/validate the stack

• Option 3: Use structured outputs if available (can be combined with others)
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Tokenization implications (6/6)

• Applications:

– Robust tokenization strategies must account for Unicode encoding 
to avoid generating ill-formed tokens.

– Many modern models (e.g., GPT-2/3) use byte-level BPE to simplify 
the vocabulary and avoid out-of-vocabulary (OOV) issues.

– Ensuring merges only occur within valid UTF-8 boundaries is 
essential for text integrity and reversibility.
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PART 3: TOKENIZATION STRATEGIES OVERVIEW
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Three candidates for units (1/5)

Tokenization: the process of segmenting text into units 
(“tokens”) for downstream NLP tasks.
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Three candidates for units (2/5)

• Three primary candidates for tokenization units:
– Words:

• Pros: Intuitive and meaning-rich; often correspond to linguistic units.

• Cons: Ambiguous boundaries. Hard to define consistently across languages.

– Morphemes:
• Linguistically motivated sub-word units (smallest meaning-bearing elements).

• Pros: Capture internal structure of words, useful for morphology-rich languages.

• Cons: Requires complex, language-specific analyzers. Not always uniquely defined.

– Characters:
• Atomic, well-defined units.

• Pros: Language-independent; no segmentation ambiguity.

• Disadvantages: Too small for most semantic tasks; long sequences, reduced efficiency.
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Three candidates for units (3/5)

Applications:

• Word-based models (e.g., classical bag-of-words, word2vec) 
often struggle with unseen or rare words.

• Character-level models are robust to out-of-vocabulary items 
but less semantically informative.
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Three candidates for units (4/5)

• Practical compromise: subwords

– Subword units (e.g., via Byte-Pair Encoding, Unigram LM) combine 
the advantages of words and characters.

– Recombine to represent unseen words, reducing out-of-vocabulary 
rates.

– Allow efficient vocabulary size control:

Subword vocabulary: V = {un, ##seen, word}
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Three candidates for units (5/5)

→ Can generate unseenword as un + ##seen + word -
Widely adopted in modern NLP architectures (e.g., BERT, GPT).

• Key insight: The choice of tokenization unit directly impacts 
model vocabulary, data sparsity, and cross-lingual 
applicability.
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PART 4: SUBWORD TOKENIZATION — BYTE-PAIR 
ENCODING (BPE)
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Big picture: trainer + encoder (1/5)

Byte-Pair Encoding (BPE) employs a two-stage architecture: a 
trainer builds the merge rules (vocabulary), and an encoder 
applies these merges to segment new text.
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Big picture: trainer + encoder (2/5)

• BPE Trainer: Learns a sequence of symbol merges from a 
training corpus.

– Begins with a vocabulary of single characters.

– Iteratively finds the most frequent adjacent symbol pair and merges 
it.

– The process is repeated for 𝑁 steps to build a vocabulary of 
frequent subwords.
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Big picture: trainer + encoder (3/5)

• BPE Encoder: Segments input text by greedily applying the 
learned merges.

– Given a word, repeatedly merges symbol pairs according to the 
learned order.

– Produces a sequence of subword units present in the final BPE 
vocabulary.
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Big picture: trainer + encoder (4/5)

• Formalization:
At each step: 𝑥∗, 𝑦∗ = argmax

𝑥,𝑦
freq 𝑥, 𝑦

Merge 𝑥∗, 𝑦∗ → new symbol 𝑧 = 𝑥∗𝑦∗

• Key Insights:

– The trainer determines which subword units are represented, 
balancing vocabulary size with corpus coverage.

– The encoder is deterministic: the same input string always yields 
the same segmentation under fixed merges.
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Big picture: trainer + encoder (5/5)

Applications:

• Used in modern NLP models (e.g., GPT) to handle rare words, 
reduce vocabulary size, and improve generalization.
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BPE training: core algorithm intuition (1/5)

Byte-Pair Encoding (BPE) Training: Core Algorithm Intuition

• BPE is an unsupervised, greedy algorithm that constructs a 
subword vocabulary by iteratively merging the most frequent 
pair of adjacent symbols in a corpus.

• Initial vocabulary consists of all characters in the corpus.

– Each word is represented as a sequence of characters (with special 
end-of-word marker).
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BPE training: core algorithm intuition (2/5)

• At each iteration:

– Identify the most frequent adjacent symbol pair (e.g., n e in new).

– Merge this pair into a new symbol (e.g., ne), updating both the 
corpus and the vocabulary.
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BPE training: core algorithm intuition (3/5)

• Example: Corpus = set new new renew reset renew
– Step 0: Words are tokenized as sequences of characters:

– s e t, n e w, n e w, r e n e w, r e s e t, r e n e w

– Step 1: Count adjacent pairs; most frequent is n e.
• Merge: n e → ne

• Update: ne w, r e ne w, etc.

– Step 2: Next frequent pair is ne w.
• Merge: ne w → new

• Update: new, r e new, etc.

– Further merges may create higher-level subwords (e.g., re- prefix).
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BPE training: core algorithm intuition (4/5)

• BPE discovers recurring subword patterns (e.g., re-) without linguistic 
supervision.

• Pseudocode (from J&M Fig. 2.6):
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BPE training: core algorithm intuition (5/5)

Applications:

• Produces subword units that capture morphological structure 
and rare word forms.

• Widely used in neural machine translation and large language 
models.
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BPE “in practice” (1/6)

• BPE is applied over token sequences, often at the byte level 
for maximal coverage.

– Byte-level BPE operates on UTF-8 byte sequences, ensuring 
compatibility with any text.

– Illegal or rare byte sequences are typically filtered to prevent 
encoding errors.

– This approach yields robust, language-agnostic tokenization, but 
may ignore linguistic boundaries.
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BPE “in practice” (2/6)

• Pretokenization with Regex:

– Pretokenization splits raw text into initial fragments using regular 
expressions.

– Common regex patterns: whitespace (\s+), punctuation 
([.,!?]), and digit chunking (\d+).

– Clitic handling: patterns like (\w+)'(s|re|ve) to preserve 
contractions as units.

– Formally, given input 𝑥, pretokenizer 𝑃 maps 𝑥 → 𝑤1, 𝑤2, . . . , 𝑤𝑛 , 
where each 𝑤𝑖 is a fragment.
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BPE “in practice” (3/6)

• Multilingual tokenization introduces vocabulary imbalances.

– BPE trained on English-heavy corpora oversegments other 
languages:

– Non-English words split into longer subword sequences.

– Leads to longer input sequences and higher computational cost for 
underrepresented languages.
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BPE “in practice” (4/6)

• Unigram LM Tokenization (Alternative):

– Unigram LM defines a probabilistic model over possible subword 
segmentations:

Segment 𝑥 = arg max
𝑆∈𝒮 𝑥

𝑃 𝑆
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BPE “in practice” (5/6)

• 𝑆: segmentation, 𝑃 𝑆 : product of subword probabilities.

– Contrast: BPE is deterministic and greedy; Unigram LM is 
probabilistic and can sample multiple segmentations.

– Linguistic pros/cons:

• Unigram LM can encode alternative morphological analyses.

• BPE is preferred for efficiency, lossless compression, and deterministic 
decoding.
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BPE “in practice” (6/6)

Applications:

• Engineering: BPE is favored for large-scale, multilingual 
systems due to speed and simplicity.

• Research: Unigram LM tokenization supports richer linguistic 
modeling, especially for morphologically complex languages.
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PART 5: RULE-BASED TOKENIZATION (WHEN 
YOU WANT “WORDS”)
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Why rule-based still matters (1/4)

Rule-based tokenization refers to the use of handcrafted 
patterns or algorithms to segment text into word-like units, as 
opposed to relying solely on statistical or neural models.

• Many NLP tasks require precise, linguistically motivated 
tokens:

– Syntactic parsing, morphological analysis, and social science studies 
often demand word-like units that respect linguistic conventions.
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Why rule-based still matters (2/4)

• English tokenization desiderata highlight why rules are still 
essential:
– Separate most punctuation marks from words (e.g., “hello!” → “hello”, “!”)

– Preserve internal punctuation in abbreviations or acronyms (e.g., U.S.A., 
e.g., co-op)

– Retain entities with internal structure as single tokens:

– Monetary amounts: $45.55

– Dates: 12/31/2023

– URLs: https://www.example.com

– Hashtags and emails: #NLP, user@example.com
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Why rule-based still matters (3/4)

• Rule-based approaches handle language-specific conventions 
more robustly:

– Numeric formats differ (e.g., English 1,000.5 vs. German 
1.000,5)

– Rule-based tokenizers can use regular expressions such as

\$[0-9]+(\.[0-9]{2})?

for monetary amounts, ensuring correct treatment.
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Why rule-based still matters (4/4)

• Applications:
– Preprocessing for downstream tasks that assume word boundaries 

(e.g., part-of-speech tagging)

– Social media and domain-specific texts, where statistical models 
may lack coverage

– Linguistic research requiring faithful segmentation of complex 
forms

– Statistical and neural tokenizers may over-split or under-split 
without explicit rules, making rule-based methods indispensable for 
accuracy in many scenarios.
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Tokenization standards (1/4)

• Tokenization speed is critical:

– Tokenization is a prerequisite for downstream tasks (e.g., parsing, 
tagging).

– Inefficient tokenization can bottleneck large-scale NLP workflows.

– Real-world systems often require processing millions of words per 
second.
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Tokenization standards (2/4)

• Standard approaches leverage regular expressions and finite-
state automata:

– Regex-based tokenizers (e.g., NLTK’s regexp_tokenize) use patterns 
such as +|[^\w\s]+ to separate words from punctuation.

– Formally, let be the input alphabet; a finite-state automaton (FSA) 
defines a set of states and transitions to efficiently recognize token 
boundaries.

– Example FSA for whitespace tokenization:
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Tokenization standards (3/4)

• Intuition: Tokenization standards must balance linguistic 
accuracy with computational efficiency.
– Simple whitespace or punctuation-based splitting misses edge 

cases (e.g., “can’t”).

– Overly complex patterns may slow processing and reduce 
maintainability.

Applications:

• Preprocessing for language modeling, parsing, and 
information retrieval.
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Tokenization standards (4/4)

• Standardized tokenization ensures comparability across 
corpora and experiments.
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Regex tokenizer example (NLTK-style) (1/4)

• Rule-based tokenization with regular expressions enables 
fine-grained control over how input text is segmented into 
tokens, crucial for downstream NLP tasks.

• Key idea: A regex tokenizer applies pattern-matching rules to 
extract tokens, rather than relying solely on whitespace or 
built-in language rules.

• Example input: That U.S.A. poster-print costs $12.40…

• Typical regex pattern components (NLTK-style):
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Regex tokenizer example (NLTK-style) (2/4)

Component Example Pattern Description

Abbreviations [A-Z]\.(?:[A-Z]\.)+ Match acronyms (e.g., U.S.A.)

Hyphenated words \w+(?:-\w+)+ Match hyphenated words (e.g., poster-print)

Currency and numbers \\d+(?:\.\d+)? Match currency and numbers (e.g., \12.40)

Ellipsis \.{3} Match ellipsis (…)

Punctuation [.,!?;:] Match punctuation marks

1/9/2026 CSE 447/517 26wi - NLP 77



Regex tokenizer example (NLTK-style) (3/4)

• Output token list for the example:
[That, U.S.A., poster−print, costs, $12.40, …]

Applications:

• Adapting regex patterns allows for custom tokenization, such 
as:

– Preserving emails as single tokens: add [\w\.-]+@[\w\.-]+ to 
the pattern

– Handling URLs, hashtags, or domain-specific entities
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Regex tokenizer example (NLTK-style) (4/4)

• Limitations:

– Rule-based tokenizers may miss linguistic subtleties (e.g., 
contractions, ambiguous cases)

– Maintenance and extensibility can be challenging for highly variable 
data

1/9/2026 CSE 447/517 26wi - NLP 79



PART 6: CORPORA, VARIATION, AND 
TOKENIZATION CHOICES
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Why corpora context matters (1/5)

Corpora context refers to the social, linguistic, and situational 
factors surrounding the creation of text. These dimensions 
crucially impact linguistic analysis, annotation, and tokenization 
decisions.
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Why corpora context matters (2/5)

• Text is always situated: speaker, dialect, time, and 
communicative purpose influence content

– Example: Transcripts from therapy sessions (e.g., ELIZA dialogues) 
differ from newswire

– Speaker intent and formality shape lexical choice, syntax, and 
segmentation
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Why corpora context matters (3/5)

• Variation dimensions affect language data:

– Language: Over 7000 languages, each with unique orthography and 
morphology

– Dialects/Varieties: Features in African American English (AAE) may 
alter word boundaries or spelling (e.g., “gon’” for “going to”)

– Genre: Tokenization differs for news, fiction, medical notes, or 
conversational transcripts

– Medical notes: “bp120/80” (blood pressure) vs. standard prose
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Why corpora context matters (4/5)

• Code-switching and mixed-language phenomena complicate 
tokenization
– Example: Social media post mixing English and Spanish (“Estoy 

happy today!”)

– Algorithms must handle multilingual word boundaries and hybrid 
grammar

Applications:

• Tokenizer design must be corpus-aware; generic rules may fail 
on nonstandard or domain-specific text
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Why corpora context matters (5/5)

• Annotation guidelines often require adaptation to the 
sociolinguistic context of the corpus

• Zipf’s Law and Heaps’ Law depend on corpus context:

– i.e. empirical statistics of the corpus 
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RECAP: PUTTING IT ALL TOGETHER
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Tokenization design decision framework (1/4)

Tokenization is the process of segmenting text into units (tokens) 
for downstream NLP tasks. Selecting an appropriate tokenization 
strategy is critical, as it affects model performance, fairness, and 
linguistic adequacy.
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Tokenization design decision framework (2/4)

The optimal tokenization scheme depends on the downstream task and linguistic context.

• For parsing or syntax-sensitive applications:
– Rule-based or word-level tokenization is preferred, possibly augmented with clitic handling.

– Example: English contractions (“don’t” → “do” + “n’t”) require splitting to preserve syntactic 
structure.

• For language models and open-vocabulary generation:
– Subword tokenization (e.g., Byte-Pair Encoding, Unigram LM) balances vocabulary size and coverage.

– Byte-level tokenization ensures safety for rare or unseen scripts.

– Example: BPE learns frequent subword units such that common words are single tokens, rare words 
split into smaller units.

• For multilingual fairness:
– Measure and minimize oversegmentation, especially in morphologically rich or low-resource 

languages.

– Evaluate per-language token efficiency (e.g., average tokens per word, coverage rate).

1/9/2026 CSE 447/517 26wi - NLP 88



Tokenization design decision framework (3/4)

Applications:

• When designing a tokenizer, analyze the trade-off between 
vocabulary size, out-of-vocabulary (OOV) rate, and token 
sequence length.
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Tokenization design decision framework (4/4)

Formally, let 𝑇 be the tokenizer, 𝑉 the vocabulary, and 𝑆 the set 
of input sentences:

min
𝑇

𝔼𝑠∈𝑆 len 𝑇 𝑠 subject to 𝑉 ≤ 𝑁, OOV 𝑇, 𝑆 < 𝜖

where 𝑁 is a vocabulary size constraint, and 𝜖 is a target OOV 
rate.

• Consider sociolinguistic factors; a tokenization scheme should 
not systematically disadvantage any language or dialect.

1/9/2026 CSE 447/517 26wi - NLP 90



Next time…

1/9/2026 CSE 447/517 26wi - NLP 91

words

encoding

tokens
Language 

Model Oracle
logits tokens

decoding

words



Sources

Content derived from: J&M Ch. 2
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Appendix: Code snippet

print(chr(0x00E9))

print(chr(0x0065) + chr(0x0301))

print(bytes.fromhex("c3 a9").decode("utf-8"))

print(bytes.fromhex("c3 a9 20").decode("utf-8"))

print(chr(0xFFFD))

print(bytes.fromhex("c3 a9 a9").decode("utf-8"))
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